共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary Rheological properties of poly(-caprolactone) (PCL) and Poly (styrene-co-acrylonitrile) (SAN) blends were examined as a function of the acrylonitrile (AN) content in SAN, to systematically understand the correlation between the interaction parameter and the theological properties of miscible polymer blends. When the plateau modulus (G
N
0) and zero shear viscosity (
0) of the PCL/SAN blends are plotted against the AN content in SAN, a minimum is observed. Qualitatively, the results obtained parallel the variation of the interchain interaction with the AN content. The negative deviation ofG
N
0 and
0 from linearity seems to be attributed to the increase in the entanglement molecular weight between dissimilar chains which results from the chain extension caused by interchain interaction. 相似文献
3.
A new family of biodegradable amino acid-based poly(ether ester amide)s (AA-PEEAs) consisting of three building blocks [poly(ε-caprolactone) (PCL), L -phenylalanine (Phe), and aliphatic acid dichloride] were synthesized by a solution polycondensation. Using DMA as the solvent, these PCL-containing Phe-PEEA polymers were obtained with fair to very good yields with weight average molecular weight (Mw) ranging from 6.9 kg/mol to 31.0 kg/mol, depending on the original molecular weight of PCL. The chemical structures of the PCL-containing Phe-PEEA polymers were confirmed by IR and NMR spectra. These PCL-containing Phe-PEEAs had lower Tg than most of the oligoethylene glycol (OEG) based AA-PEEAs due to the more molecular flexibility of the PCL block in the backbones, but had higher Tg than non-amino acid based PEEA. The solubility of the PCL-containing Phe-PEEA polymers in a wide range of common organic solvents, such as THF and chloroform, was significantly improved when comparing with aliphatic diol based poly(ester amide)s and OEG based AA-PEEAs. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
4.
In order to increase the miscibility in the blend of poly(β-hydroxybutyrate) [PHB] and poly(ε-caprolactone) [PCL], PHB/PCL copolyesters were used as compatibilizers. These PHB/PCL copolyesters were synthesized by transesterification in solution phase. The melting point [Tm] depression, which was not observed in PHB/PCL blend without compatibilizer, was observed when PHB/PCL copolyesters as compatibilizers were added to the PHB/PCL blend system. As the amount of compatibilizer added to the blend increased, the crystallization temperature [Tc] of PCL in the blend increased and Tc of PHB in the blend decreased. The difference in Tc between PHB and PCL was gradually reduced. When the sequence length of PHB block and PCL block in the PHB/PCL copolyester increased, the miscibility of the blend increased. This is evidenced by the depression in the Tm of PHB and PCL in the blend and by the decrease in the difference of Tc between PHB and PCL. From the polarizing optical micrographs, the phase separation in PHB/PCL blend was observed. However, in the presence of PHB/PCL copolyester, the spherulite of PHB grows in equilibrium with one phase melt. Received: 27 July 1998/Revised version: 12 October 1998/Accepted: 4 November 1998 相似文献
5.
6.
Biodegradable polyrotaxane (PR)-based triblock copolymers were synthesized via the atom transfer radical polymerization (ATRP) of N-isopropylacrylamide (NIPAAm) initiated with polypseudorotaxanes (PPRs) consisting of a distal 2-bromopropiomyl bromide end-capping poly(ε-caprolactone) (Br-PCL-Br) and a varying amount of α-cyclodextrins (α-CDs) in the presence of Cu(I)Br/PMDETA at 25 °C in aqueous solution. The copolymers were featured by relatively higher yields from 46.0% to 82.8% as compared with previous reports. Their structure was characterized in detail by using 1H NMR, 13C CP/MAS NMR, GPC, WXRD, DSC and TGA analyses. When a feed molar ratio of NIPAAm to Br-PCL-Br was changed from 50 to 200, the degree of polymerization of PNIPAAm blocks attached to two ends of PPRs was in a range of 158–500. About one third of the added α-CDs were still entrapped on the central PCL chain after the ATRP process. Attaching PNIPAAm rendered the copolymers soluble in aqueous solution showing the thermo-responsibility as evidenced by turbidity measurements. 相似文献
7.
A series of low polydispersity cyclic PCL samples (C-PCLs), as well as their linear analogs (L-PCLs), were synthesized by click chemistry in a number average molecular weight (Mn) range of 2–22 kg/mol. They were investigated by Polarized Light Optical Microscopy (PLOM) and Differential Scanning Calorimetry (DSC). The nucleation and overall crystallization kinetics were studied, as well as their self-nucleation behavior and SSA (Successive Self-nucleation and Annealing) thermal fractionation. Cyclic PCLs were found to nucleate and crystallize faster than linear PCLs due to: (a) faster diffusion of C-PCL chains and (b) larger supercoolings of C-PCLs at any given crystallization temperature, as compared to L-PCLs. A bell shape curve was obtained when the overall crystallization rate was examined as a function of Mn, this effect is probably due to a competition between nucleation and diffusion. It was found for the first time, that since cyclic molecules have lower entanglement densities, they can quickly recover their pseudo-equilibrium compact coil conformations upon melting and therefore exhibit much smaller crystalline memory effects than their linear counterparts of identical chain lengths. SSA revealed that C-PCLs are more sensitive to annealing than L-PCLs because their ring topology and limited lamellar chain folding facilitates crystal thickening. 相似文献
8.
A series of amphiphilic graft copolymers PEO-g-PCL with different poly (ε-caprolactone) (PCL) molecular weight were successfully synthesized by a combination of anionic ring-opening polymerization (AROP) and coordination-insertion ring-opening polymerization. The linear PEO was produced by AROP of ethylene oxide (EO) and ethoxyethyl glycidyl ether initiated by 2-(2-methoxyethoxy) ethoxide potassium, and the hydroxyl groups on the backbone were deprotected after hydrolysis. The ring-opening polymerization of CL was initiated using the linear poly (ethylene oxide) (PEO) with hydroxyl group on repeated monomer as macroinitiator and Sn(Oct)2 as catalyst, then amphiphilic graft copolymers PEO-g-PCL were obtained. By changing the ratio of monomer and macroinitiator, a series of PEO-g-PCL with well-defined structure, molecular weight control, and narrow molecular weight distribution were prepared. The expected intermediates and final products were confirmed by 1H NMR and GPC analyzes. In addition, these amphiphilic graft copolymers could form spherical aggregates in aqueous solution by self-assemble, which were characterized by transmission electron microscopy, and the critical micelle concentration values of graft copolymers PEO-g-PCL were also examined in this article. 相似文献
9.
The recently developed differential fast scanning calorimetry (DFSC) is used for a new look at the crystal growth of poly(?-caprolactone) (PCL) from 185 K, below the glass transition temperature, to 330 K, close to the equilibrium melting temperature. The DFSC allows temperature control of the sample and determination of its heat capacity using heating rates from 50 to 50,000 K/s. The crystal nucleation and crystallization halftimes were determined simultaneously. The obtained halftimes cover a range from 3 × 10−2 s (nucleation at 215 K) to 3 × 109 s (crystallization at 185 K). After attempting to analyze the experiments with the classical nucleation and growth model, developed for systems consisting of small molecules, a new methodology is described which addresses the specific problems of crystallization of flexible linear macromolecules. The key problems which are attempted to be resolved concern the differences between the structures of the various entities identified and their specific role in the mechanism of growth. The structures range from configurations having practically unmeasurable latent heats of ordering (nuclei) to being clearly-recognizable, ordered species with rather sharp disordering endotherms in the temperature range from the glass transition to equilibrium melting for increasingly perfect and larger crystals. The mechanisms and kinetics of growth involve also a detailed understanding of the interaction with the surrounding rigid-amorphous fraction (RAF) in dependence of crystal size and perfection. 相似文献
10.
New amphiphilic thermosensitive poly(N-vinylcaprolactam)/poly(ε-caprolactone) (PNVCL-b-PCL) block copolymers were synthesized by ring-opening polymerization of ε-caprolactone with hydroxy-terminated poly(N-vinylcaprolactam) (PNVCL-OH) as a macroinitiator. The structures of the polymers were confirmed by IR, 1H NMR and GPC. The critical micelle concentrations of copolymer in aqueous solution measured by the fluorescence probe technique reduced with the increasing of the proportion of hydrophobic parts, so did the diameter and distribution of the micelles determined by dynamic light scattering. The shape observed by transmission electron microscopy (TEM) demonstrated that the micelles are spherical. On the other hand, the UV–vis measurement showed that polymers exhibit a reproducible temperature-responsive behavior with a lower critical solution temperature (LCST). The LCST of PNVCL-OH can be adjusted by controlling the molecular weights, and that of copolymers can be adjusted by controlling the compositions and the concentration. Variable temperature TEM measurements demonstrated that LCST transition was the result of transition of individual micelles to larger aggregates. 相似文献
11.
Mariselis Trujillo María Luisa Arnal Alejandro J. Müller Mayra A. Mujica Caribay Urbina de Navarro Benoit Ruelle Philippe Dubois 《Polymer》2012,53(3):832-841
In this work, the nucleation and crystallization behavior of melt mixed PCL/CNT nanocomposites has been studied. The mixtures of PCL and pristine MWNTs were prepared by extrusion with different nanofiller contents: 0.3, 0.5, 0.7, 1 and 3%. Standard DSC measurements demonstrated pronounced nucleation effects as well as increases in PCL crystallinity. The nucleation effect saturates at only 0.5% (a value much lower than those previously reported in the literature for similar nanocomposites) indicating that the dispersions obtained were excellent. This was corroborated by both TEM observations and by the determination of a very low dielectric percolation threshold (i.e., 0.3%). In self-nucleation experiments, supernucleation effects were obtained up to a maximum of approximately 200% efficiency. This is the first time that supernucleation effects of this order have been reported for PCL filled with untreated MWNTs, a result that we attribute to the excellent dispersion achieved. Isothermal crystallization experiments performed by DSC showed an increase in the crystallization kinetics of PCL with increases in MWNT content as a consequence of the supernucleation effect. The Avrami equation successfully described the overall crystallization kinetics and while neat PCL exhibited Avrami indexes close to 3, indicating that instantaneously nucleated spherulites were formed, the nanocomposite yielded mostly Avrami index values close to 2, as expected for axialites instantaneously nucleated on the surface of the MWNTs. Remarkably, the temperature dependence of the overall crystallization rate exhibited a dramatic change with MWNT content. This novel effect was described as a crystallization regime change (i.e., from Regime II to Regime III) induced by the presence of the MWNTs in terms of the Lauritzen and Hoffman theory. 相似文献
12.
Claudia Gordin Christelle Delaite Sophie Bistac Daniela Rusu Mihai Rusu 《Polymer Bulletin》2009,63(4):517-529
Poly(vinyl chloride)/poly(ε-caprolactone)/poly(ε-caprolactone)-b-poly(dimethylsiloxane) [PVC/PCL/(PCL-b-PDMS)] blends were
prepared by solvent casting from tetrahydrofuran. The content of PVC was kept constant (60 wt%); the PCL and PCL-b-PDMS contents
were varied by replacing different amounts of PCL [0–20 wt% from the PVC/PCL (60/40) blend] with PCL-b-PDMS copolymer having
different molecular weights of the PCL blocks. The thermal properties of prepared blends were investigated by differential
scanning calorimetry in order to analyse miscibility (through glass transition temperature) and crystallinity. Differential
scanning calorimetry analyses show that the PVC/PCL/PCL-b-PDMS blends are multi-phase materials which contain a PVC plasticized
with PCL phase, a block copolymer PCL-b-PDMS phase (with crystalline and amorphous PCL and PDMS domains) and a PCL phase (preponderantly
crystalline). 相似文献
13.
Well-defined mid-chain functional macrophotoinitiator of poly(ε-caprolactone) (PCL-PI-PCL) was synthesized by combination of ring-opening polymerization (ROP) and click chemistry strategy. Dibromo functional photoinitiator (Br–PI–Br) was prepared by the condensation of 2-bromopropanoyl bromide with 2-hydroxy-1-[4-(2-hydroxyethoxy)phenyl]-2-methyl propan-1-one (PI). Subsequently, terminal bromo groups in Br–PI–Br were converted to azido groups to form diazido functional photoinitiator (N3–PI–N3) using NaN3. Well-defined precursor alkyne-functionalized PCL (alkyne-PCL) was prepared by ROP of ε-CL in the presence of propargyl alcohol as the initiator and stannous-2-ethylhexanoate (Sn(Oct)2) as the catalyst. Finally, the alkyne-functionalized PCL was coupled with N3–PI–N3 with high efficiency by click chemistry. The spectroscopic studies showed that low-polydispersity PCL with desired photoinitiator functionality in the middle of the chain was obtained. 相似文献
14.
Adriaan Stephanus Luyt Ana Antunes Anton Popelka Abdelrahman Mahmoud Mohammad Korany Hassan Peter Kasak 《应用聚合物科学杂志》2021,138(43):51266
The effect of accelerated weathering degradation on the properties of poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) blends and PLA/PCL/titanium (IV) dioxide (TiO2) nanocomposites are presented in this paper. The results show that both polymers are susceptible to weathering degradation, but their degradation rates are different and are also influenced by the presence of TiO2 in the samples. Visual, microscopic and atomic force microsocpy observations of the surface after accelerated weathering tests confirmed that degradation occurred faster in the PLA/PCL blends than in the PLA/PCL/TiO2 nanocomposites. The X-ray diffraction results showed the degradation of PCL in the disappearance of its characteristic peaks over weathering time, and also confirmed that PLA lost its amorphous character and developed crystals from the shorter chains formed as a result of degradative chain scission. It was further observed that the presence of TiO2 retarded the degradation of both PLA and PCL. These results were supported by the differential scanning calorimetry results. The thermogravimetric analysis results confirmed that that PLA and PCL respectively influenced each other's thermal degradation, and that TiO2 played a role in the thermal degradation of both PLA and PCL. The tensile properties of both PLA/PCL and PLA/PCL/TiO2 were significantly reduced through weathering exposure and the incorporation of TiO2. 相似文献
15.
Non-covalently bonded crystalline inclusion compounds (ICs) have been formed by threading host cyclic starches, α-cyclodextrins (α-CDs), onto guest poly(ε-caprolactone) (PCL) chains and by co-crystallization of guest PCL and host urea (U). PCLs were coalesced from both ICs by appropriate removal of the α-CD and U hosts. When added at low concentrations, PCL coalesced from its α-CD–IC served as an effective self-nucleating agent for the bulk crystallization of as-received PCL from the melt. Film sandwiches consisting of two layers of as-received (asr) (control), and one layer each of asr and self-nucleated (nuc) (composite) PCLs were produced by melt pressing. A composite sandwich consisting of a film of neat PCL coalesced from its U–IC (c-PCL) and a film of asr-PCL was also melt pressed. DSC showed that both composite films maintain their characteristic structures and properties even after melt-pressing them together. Both single component film sandwiches exhibited strong interfaces and better mechanical properties than the asr-PCL/asr-PCL control composite sandwiches. These results are similar to those previously obtained on similarly prepared nylon-6 (N-6) sandwich composites made with asr- and nuc-N-6 films with the same levels of crystallinity. However, while the elongation at break was greatly reduced in the asr-N-6/nuc-N-6 composite, asr-/asr-, asr-/c-, and asr-/nuc-, PCL/PCL-composites all showed similarly large elongations at break. The above room temperature and well below room temperature glass-transition temperatures of N-6 and PCL are likely the cause of their widely different elongations at break. 相似文献
16.
《Reactive and Functional Polymers》2012,72(5):349-357
Four different miktoarm star copolymers poly(ethylene glycol-(ε-caprolactone)2) diol [PEG-PCL2] were obtained using α-diol-ω-methoxy poly(ethylene glycol) [MPEG-(OH)2] as macroinitiator/chain transfer agent in the ring opening polymerization (ROP) of ε-caprolactone (CL) catalyzed by tin(II) 2-ethylhexanoate [Sn(Oct)2]. PEG-PCL2 and 1,6-hexamethylene diisocyanate (HDI) were used as precursors of a new family of poly(ester-ether urethane)s PEUs. PEUs films were characterized by FT-IR, DSC, mechanical properties, water absorption, hydrolytic degradation and SEM. 相似文献
17.
Cristina Acebo Xavier Fernández-Francos Francesc Ferrando Àngels Serra Josep M. Salla Xavier Ramis 《Reactive and Functional Polymers》2013,73(3):431-441
Well-defined multiarm star copolymers, with hyperbranched poly(ethyleneimine) (PEI) as the core and poly(ε-caprolactone) (PCL) arms with different degree of polymerization were synthesized by cationic ring-opening polymerization of ε-caprolactone from a hyperbranched poly(ethyleneimine) core and used to modify diglycidylether of bisphenol A formulations cured with 1-methylimidazole as anionic initiator. The curing process was studied by dynamic scanning calorimetry (DSC) and FTIR. By rheometry the complex viscosity of the multiarm stars synthesized and the influence of their addition to the reactive mixture was analyzed in detail. The resulting materials were characterized by thermal and mechanical tests. The addition of the multiarm star to the formulation led to homogeneous materials with a slightly toughened fracture in comparison to neat DGEBA thermosets without compromising thermal characteristics. 相似文献
18.
Synthesis of poly(tetrahydrofuran-b-ε-caprolactone) macromonomer via the Sml2-induced transformation
Summary A novel well-defined macromonomer consisting of different types of monomers in polymerization mechanisms was synthesized for the first time through the SmI2-induced transformation. The macromonomer, -methacryloylpoly-(tetrahydrofuran-b--caprolactone), was prepared by the reaction of methacryloyl chloride with living poly(tetrahydrofuran-b--caprolactone) [poly(THF-b-CL)] which was obtained by the two-electron reduction of the cationic growing center of poly(THF) by samarium iodide (SmI2) followed by the polymerization of CL. 1H NMR analysis indicated the quantitative introduction of the methacryloyl group onto the polymer end. The molecular weight distribution of the macromonomer was relatively narrow, and the unit ratio of THF to CL could be controlled by both polymerization time of THF and the amount of CL, resulting from the living nature of both CL- and THF-polymerizations. Radical copolymerization of the produced macromonomers with methyl methacrylate in the presence of AIBN resulted in a polymethacrylate backbone grafted with poly(THF-b-CL) block copolymers. 相似文献
19.
Star-shaped copolymers with four and six poly(ε-caprolactone)-block-poly(N-vinylcaprolactam) (S(PCL-b-PNVCL)) arms were successfully synthesized by combining ring opening polymerization (ROP) of ε-caprolactone (CL) and reversible addition-fragmentation chain transfer (RAFT) polymerization of N-vinylcaprolactam (NVCL). The resulting star copolymers were characterized using 1H NMR, GPC and UV–vis. The numbers of arms in the star-shaped PCL-b-PNVCL block copolymers were demonstrated using degradation studies under acidic conditions, and the individual PNVCL chains were characterized by GPC and 1H NMR. In aqueous solution, star-shaped PCL-b-PNVCL block copolymers self-assembled into large aggregates or micelles with sizes varying from 54 to 300 nm, depending on the molecular weight of the copolymer and the relative lengths of the hydrophobic and hydrophilic segments. Micelles were characterized by atomic force microscopy (AFM), dynamic light scattering (DLS) and scanning electron microscopy (SEM). 相似文献
20.
Ana V. Machado Gabriela Botelho M. Manuela Silva Isabel Correia Neves António M. Fonseca 《Journal of Polymer Research》2011,18(6):1743-1749
Nanocomposites of poly(ε-caprolactone) (PCL) and tungsten trioxide (WO3) were prepared by solvent casting using 5 and 10% of WO3 nanoparticles. The nanocomposites were characterized using several analytical techniques such as XRD, SEM, thermal analysis (TGA and DSC), spectroscopic methods (FTIR and UV/Vis) to gather information on the modifications introduced by WO3. Photodegradation of PCL/WO3 nanocomposites was studied exposing the samples to a Xenon lamp, which simulates the UV spectrum of the sun. The results obtained showed that due to the incorporation of WO3 nanoparticles, the nanocomposites exhibit higher thermal stability together with higher photodegradation efficiency. 相似文献