首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large‐scale superhydrophobic composite films with enhanced tensile properties were prepared by multinozzle conveyor belt electrospinning. First, a strategy of conveyor belt electrospinning was introduced for large‐scale fabrication since the conveyor belt can expand the electrospinning area unlimitedly. During the electrospinning (or electrospraying) process, certain kinds of fibers are combined on the conveyor belt in one electrospinning (or electrospraying) step. The superhydrophobicity of electrospun film can be achieved by the presence of PS beads and bead‐on‐string PVDF fibers, while submicron PAN fibers are responsible for the improvement of mechanical properties. The result shows that CA value of the surface comprising of PS beads and bead‐on‐string PVDF fibers could reach up to 155.0°. As the submicron PAN fibers increased, the value of CA decreased, changing from 155.0° to 140.0°, meanwhile the tensile strength of composite film was enhanced from 1.14 to 4.12 MPa correspondingly which is beneficial to putting the films into practice. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39735.  相似文献   

2.
To expand the application of electrospun fibers or electrosprayed beads, micro-nano hierarchical structures of polystyrene (PS) have been constructed through the adjustment of solvent, polymer concentration, environment humidity, electrospinning temperature, etc. Primary structures, such as fibers, beads and bead-on-string structure, as well as secondary structures, such as nanopores, nanopapilla and net-work structure, have been constructed. Solvent plays an important role in the construction of both primary structures and secondary structures. By using N,N-dimethylformamide (DMF), tetrahydrofuran (THF) and mixed solvent of DMF/THF, the micro-nano hierarchical structures can be controlled. Humidity is a key factor to the construction of secondary structures. The obtained fibers or beads have smooth surface at low humidity. While at high humidity, secondary structures tend to appear. For the PS/DMF system, vapor-induced phase separation may be the most pertinent mechanism to explain the formation of secondary structures. While for the PS/THF system, breath figure theory can explain the formation of uniform nanopores properly.  相似文献   

3.
Diblock copolymers based on polystyrene (PS) macroinitiators and four different fluorinated monomers (perfluorooctyl ethyl methacrylate (FMA), pentafluorostyrene (FS), perfluorooctyl-ethylene oxymethyl styrene (EMS), 2,3,5,6-tetrafluoro-4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecaoxy)styrene (FSF)) were synthesized via atom transfer radical polymerization (ATRP). The lengths of the PS and fluorinated blocks were altered and the surface and self-assembling properties of the polymers were compared with respect to the fluorinated monomer used and the fluorine content. The surface properties, contact angles and surface tension, were enhanced by the existence of the CF3 groups at the end of the alkyl chains compared with poly(pentafluorostyrene). Hydrophobicity of the surfaces was further enhanced by electrospinning the polymer solutions, which yielded superhydrophobic surfaces with water contact angles >150° for polymers having CF3 groups.  相似文献   

4.
Lin J  Cai Y  Wang X  Ding B  Yu J  Wang M 《Nanoscale》2011,3(3):1258-1262
Inspired by the self-cleaning lotus leaf and silver ragwort leaf, here we demonstrate the fabrication of biomimetic superhydrophobic fibrous mats via electrospinning polystyrene (PS) solution in the presence of silica nanoparticles. The resultant electrospun fiber surfaces exhibited a fascinating structure with the combination of nano-protrusions and numerous grooves due to the rapid phase separation in electrospinning. The content of silica nanoparticles incorporated into the fibers proved to be the key factor affecting the fiber surface morphology and hydrophobicity. The PS fibrous mats containing 14.3 wt% silica nanoparticles showed a stable superhydrophobicity with a water contact angle as high as 157.2°, exceeding that (147°) of the silver ragwort leaf and approaching that (160°) of the lotus leaf. The superhydrophobicity was explained by the hierarchical surfaces increasing the surface roughness which trapped more air under the water droplets that fell on the fibers.  相似文献   

5.
A new superhydrophobic nanofiber membrane with certain mechanical strength was prepared by electrospinning the polystyrene (PS) with ester modified silicone oil (EMSO). To increase the roughness and tensile strength, the EMSO with low energy as hydrophobic macromolecular substance was added into PS precursor solution. Then during the process of electrospinning, some of the ester modified silicone oil was distribution on the surface of substrate (PS) fiber films to generate double structure which leaded to the superhydrophobicity. We probed into the relationship between the surface wettability, morphologies, mechanical property, and the mass ratios of ester modified silicone oil /PS, and with the increasing of EMSO, the water CA value increased from 135 ± 0.5° to 152 ± 0.2°and the tensile strength grown from 0.23 MPa to 0.92 MPa. The film shows a network structure consisting of numerous randomly oriented fibers, the diameters of which changed from 0.5 μm to 2.0 μm belong to relatively big diameter fibers, which has great significance to the research of superhydrophobic membrane with big diameter fibers and also this method is easy, convenient and environment friendly. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40718.  相似文献   

6.
We demonstrate a facile and efficient method for fabricating multifunctional superhydrophobic organic–inorganic hybrid macroporous coatings and films with robust environmental stabilities involving the electrospinning of phenylsilsesquiazane (PhSSQZ) in the presence of polystyrene (PS). The resulting freestanding PhSSQZ/PS webs, which featured hierarchical fibrous structures with the unique chemical properties of PhSSQZ, provided a practical material with potential uses in many applications including structural coatings, oil–water separation membranes, and high-performance air filters. The materials maintained their fibrous structures and superhydrophobicity even after heat treatment at 600 °C under an ambient atmosphere, which is among the highest level reported up to date for solution-processed superhydrophobic surfaces with soft materials. The solvent resistance and mechanical strength of the PhSSQZ/PS webs were significantly enhanced through the structured siloxane network due to thermally induced hydrolysis of PhSSQZ and condensation of the resulting silanols. The properties of this novel material suggest that the present approach will advance our knowledge and capability to design and develop multifunctional smart materials with robust superhydrophobicity and macroporosity.  相似文献   

7.
The morphologies and properties of Polystyrene (PS)/Carbon Nanotube (CNT) conductive electrospun mat were studied in this paper. Nanocomposite fibers were obtained through electrospinning of PS/Di-Methyl Formamide (DMF) solution containing different concentrations and types of CNTs. The dispersion condition of CNTs was correlated to morphologies and properties of nanocomposite fibers. A copolymer as an interfacial agent (SBS, Styrene-butadiene-styrene type) was used to modify the dispersion of CNTs in PS solution before electrospinning. The results showed that the presence of the copolymer significantly enhances CNT dispersion. The fiber diameters varied between 200 nm and 800 nm depending on CNT type, polymer concentration and copolymer. The final morphological study of the fibers showed that CNT addition caused a decrease in beads formation along fiber axis before percolation threshold. However, addition of CNTs above percolation increased the beads formation, depending on the dispersion condition. The presence of SBS modified the dispersion, reduced the fiber diameter and the number of bead structures. Electrical conductivity measurements on nanocomposite mats of 15-300 μm in thickness showed an electrical percolation threshold around 4 wt% MWCNT; while the samples containing SBS showed higher values of conductivities below percolation compared to the samples with no compatibilizer. Enhancement in mechanical properties was observed by the addition of CNTs at concentrations below percolation.  相似文献   

8.
Mesh‐like fiber mats of polystyrene (PS) were deposited using DC‐biased AC‐electrospinning. Superhydrophobic surfaces with water contact angles greater than 150° and gas fraction values of up to 97% were obtained. Rheological study was conducted on these fiber surfaces and showed a decrease in shear stress when compared with a noncoated surface (no slip), making them excellent candidates for applications requiring the reduction of skin‐friction drag in submerged surfaces. We have also shown that addition of a second, low‐surface energy polymer to a solution of PS can be used to control the fiber internal porosity depending on the concentration of the second polymer. Contact‐angle measurements on mats consisting of porous and nonporous fibers have been used to evaluate the role of the larger spaces between the fibers and the pores on individual fibers on superhydrophobicity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
The change of bead morphology formed on electrospun polystyrene fibers   总被引:1,自引:0,他引:1  
Polystyrene (PS) dissolved in the mixture of tetrahydrofuran (THF) and N,N-dimethyl formamide (DMF) was electrospun to prepare fibers of sub-micron in diameters. Electropinning parameters such as polymer concentration, applied voltage and tip-to-collector distance were controlled. From these parameters it was determined that while the surface tension of polymer solution had linear correlation with the critical voltage, throughput was dependent on electric conductivity. The electrospun PS fibers produced contained irregular beads and electrospinning certainly was enhanced with increasing DMF content. The bead concentration was also controlled by DMF content. The aspect ratio of the formed beads and the diameter of fibers were increased with increasing solution concentration. When PS was dissolved in only THF, an unexpected half hollow spheres (HHS) structure appeared. Also, different shape forms of PS non-woven mats have been prepared by controlling electrospinning parameters.  相似文献   

10.
A superhydrophobic surface was created on poly(vinylchloride)-coated architectural fabric using spray coating method. Dispersions of nanoparticles and a flourochemical were prepared as top coating solutions. After spray-dry-cure process, contact angle, sliding (tilt) angle, 3 M water repellency test and surface morphology were compared between uncoated and top coated PVC surfaces. The results indicated that a specific nano-TiO2 dispersion top coating produced a superhydrophobic layer on the top of the PVC surface with high contact angle (150°) and very low sliding angle (2°). Combination of two major requirements, the magnified of the degree of roughness and low surface energy, created self-cleaning effect on the PVC surface. Abrasion fastness of superhydrophobic top coating was improved by surface oxidation via UV–ozone surface treatments. Spectroscopic analysis demonstrated that formation of oxygenated functional groups has improved PVC wettability and adhesion. Results of artificial weathering test indicated no change in superhydrophobicity of top coated PVC.  相似文献   

11.
Via electroless metal deposition, hierarchical platinum nanostructures, consisting of pinecone-like, microspherical and flower-like (assembling with staggered nanosheets) structures, are successfully synthesized on silicon substrates without introducing any template or surfactant, by controlling the concentration of platinum salt and pH value. Based on the observations of morphological evolutions, the mechanism for formation of the three hierarchical Pt nanostructures is proposed by manipulating the growth kinetics. Their properties of electrocatalysis, surface-enhanced Raman scattering (SERS) and surface wettability are comparatively studied. The electrochemical surface area follows the order of microspherical structures > pinecone-like structures > flower-like structures, while the enhancement factor of SERS is in the order of flower-like structures > pinecone-like structures > microspherical structures. After modification with fluoroalkylsilane, the surfaces of flower-like structures and pinecone-like structures become superhydrophobic (165° and 158° of CA, respectively), whereas the CA is only 122° for microspherical structures.  相似文献   

12.
We report the fabrication of superhydrophobic surfaces with a hierarchical morphology by self-organized anodizing process. Simply by anodizing of niobium metal in hot phosphate–glycerol electrolyte, niobium oxide microcones, consisting of highly branched oxide nanofibers, develop on the surface. The size of the microcones and their tip angles are controlled by changing the applied potential difference in anodizing and the water content in the electrolyte. Reduction of the water content increases the size of the microcones, with the nanofibers changing to nanoparticles. The size of microcones is also reduced by increasing the applied potential difference, without influencing the tip angle. The hierarchical oxide surfaces are superhydrophilic, with static contact angles close to 0°. Coating of the anodic oxide films with a monolayer of fluoroalkyl phosphate makes the surfaces superhydrophobic with a contact angle for water as high as 175° and a very small contact angle hysteresis of only 2°. The present results indicate that the larger microcones with smaller tip angles show the higher contact angle for water.  相似文献   

13.
The polyvinylpyrrolidone (PVP)/poly(vinylidene fluoride) (PVDF) core–shell nanofiber mats with superhydrophobic surface have been prepared via electrospinning its homogeneous blending solutions, and the formation of the core–shell structure was achieved by the thermal induced phase separation assisted with the low surface tension of PVDF. The electrospinnability of the blending solutions was also investigated by varying the blending ratio of the PVP and PVDF, and it enhanced with the increase of PVP content. SEM and TEM results showed that the fibers size was varied in the range of 100 nm–600 nm with smooth surface and core–shell structure. The composition of the shell layer was determined by the XPS analysis, and further confirmed by water contact angle (WCA) testing. As the fraction of PVDF exceeding PVP in the electrospinning solutions, the nanofiber mats showed superhydrophobic property with the WCA above 120°. It indicated that the PVDF was concentrated in the shell layer of the fibers. X-Ray diffraction (XRD) and attenuated total reflection infrared spectroscopy (ATR-IR) analysis indicated that the PVDF was aggregated with the β-phase crystallite as dominant crystallite. The nanofiber mats with the gas breathability and watertightness ability due to the porous structure and superhydrophobic would be potential applied in wound healing.  相似文献   

14.
By means of the electrospinning technique, micron- and nanofibers can be obtained from polymer solutions under a very high electrical field. A special challenge is to produce bead-free uniform fibers since any minor changes in the electrospinning parameters such as slight variations in the polymer solutions and/or electrospinning experimental parameters may result in significant variations in the final nanofiber morphology. Furthermore, it is often not trivial at all to obtain reproducible uniform electrospun nanofibers for the optimized electrospinning conditions. Here we report that the conductivity of the solvent is the key factor for the reproducible electrospinning of uniform polystyrene (PS) fibers from dimethylformamide (DMF) solutions. It is shown that even slight changes in the conductivity of the DMF solutions can greatly affect the morphology of the resulting electrospun PS fibers. Here, we have carried out a thorough and systematic study on the effect of solution conductivity on the electrospinning of bead-free polystyrene (PS) fibers when dimethylformamide (DMF) was used as the solvent. Interestingly, we found out that different grades of solvent as-received (DMF) from various suppliers have slightly different solution conductivities. Consequently, the polymer solutions prepared with the same PS concentration have different conductivities, which are shown to have significant changes on the morphology of the PS fibers resulting in beaded or bead-free uniform fibers when electrospun under the identical electrospinning conditions. Such as, bead-free PS fibers were obtained from PS solutions in the range of 20% (w/v) through 30% (w/v) depending on the DMF grade used. In brief, it was observed that solutions with a higher conductivity yielded bead-free fibers from lower polymer concentrations, which confirms that the solution conductivity plays a very significant role in producing bead-free uniform PS fibers.  相似文献   

15.
Nanofibers of highly sulfonated (IEC ∼4.5 meq/g) polystyrene (SPS) were successfully electrospun. To accomplish this, the process of electrospinning this difficult-to-spin material was studied in detail. Fiber quality was optimized by manipulating the process and solution variables to fabricate continuous bead-free fibers. Bead-free fibers (average diameter 260 nm) were electrospun from 25 wt% SPS (500 kDa) in DMF at an electrode separation of 10 cm, an applied voltage of 16.5 kV and a flow rate of 0.3 mL/h. With increasing solution concentration, and thereby the solution viscosity, the morphology changed from beads to bead-on-string fibers to continuous cylindrical fibers. Beaded fibers and continuous bead-free fibers of SPS (500 kDa) could be spun at ∼2 Ce and 3.5 Ce, respectively, where Ce is the entanglement concentration determined from solution-viscosity measurements. The onset of formation of beaded fibers coincided with a sharp transition in the scaling of the storage modulus-concentration relationship.  相似文献   

16.
Hydrophobic fibrous slippery liquid-infused porous surfaces (SLIPS) were fabricated by electrospinning polydimethylsiloxane (PDMS) and polystyrene (PS) as a carrier polymer on plasma-treated polyethylene (PE) and polyurethane (PU) substrates. Subsequent infusion of blackseed oil (BSO) into the porous structures was applied for the preparation of the SLIPS. SLIPS with infused lubricants can act as a repellency layer and play an important role in the prevention of biofilm formation. The effect of polymer solutions used in the electrospinning process was investigated to obtain well-defined hydrophobic fibrous structures. The surface properties were analyzed through various optical, macroscopic and spectroscopic techniques. A comprehensive investigation of the surface chemistry, surface morphology/topography, and mechanical properties was carried out on selected samples at optimized conditions. The electrospun fibers prepared using a mixture of PDMS/PS in the ratio of 1:1:10 (g/g/mL) using tetrahydrofuran (THF) solvent showed the best results in terms of fiber uniformity. The subsequent infusion of BSO into the fabricated PDMS/PS fiber mats exhibited slippery behavior regarding water droplets. Moreover, prepared SLIPS exhibited antibacterial activity against Staphylococcus aureus and Escherichia coli bacterium strains.  相似文献   

17.
In this study, superhydrophobic electrospun P(VDF-co-HFP) membranes were fabricated in a one-step electrospinning process. The effects of the key parameters of electrospinning (solution concentration, electrical potential, flow rate, and solvent) on the surface roughness, fiber formation, and hydrophobicity of the membranes were evaluated using Taguchi method. A 4 × 3 orthogonal array was utilized, and the results indicated that the solvent played the critical role in producing the superhydrophobic nanofibre membranes. It was demonstrated that it is possible to produce superhydrophobic membranes with P(VDF-co-HFP) without additional functionalisation and fillers. The highest water contact angle and the lowest contact angle hysteresis obtained were 156° and 5°, respectively, and the roughness values varied from 0.15 to 5.74 μm for the produced P(VDF-co-HFP) nanofibre membranes. The surface superhydrophobicity of the membranes was attributed to the specific structures consisting of a combination of beads and nanofibres. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48817.  相似文献   

18.
Superhydrophobic materials are currently used for their water‐repelling, self‐cleaning and anti‐fouling properties but are also potentially attractive to prevent snow or ice accumulation on exposed structures. Using the electrospinning technique, polymer mats made of polystyrene and poly[tetrafluoroethylene‐co‐(vinylidene fluoride)‐co‐propylene] (PTVFP) were prepared. They were found to show highly hydrophobic properties, water contact angle (CA) between 130 and 150°, when a dual fiber–bead microstructure was observed. Superhydrophobicity, CA > 150°, was reached when PTVFP mats were electrospun from a polymer solution containing dispersed polytetrafluoroethylene (PTFE) nanoparticles. Using atomic force microscopy imaging, protruding nanosized asperities on fiber and bead surfaces were observed and this structure led to superhydrophobic properties. Materials prepared from a high‐viscosity PTVFP/ethyl acetate solution with PTFE particles, 200 nm diameter and 8% (w/w), showed an 11.2% improvement in hydrophobicity, CA = 161°, compared to the materials obtained from a particle‐free polymer solution (CA = 143°). Copyright © 2007 Society of Chemical Industry  相似文献   

19.
A novel method was proposed to fabricate hollow and surface porous polystyrene (PS) fibrous membranes for the removal of oil from water. Spinning solutions were prepared by using camphene and tetraethoxysilane (TEOS) as pore-forming agents, and hollow PS fibers with 100–400 nm pores on the surface were fabricated by electrospinning and freeze-drying. The distribution and volatilization of camphene and TEOS, as well as the drying behavior of solvents in high relative humidity, were important factors in forming the porous structure of PS fibers. The specific surface area of obtained PS fibrous membranes was twice that of conventional electrospun PS fibrous membranes and displayed superhydrophobic properties. Moreover, the large adsorption storage space was formed due to the hollow structure and porous surface of PS fibers. The maximum oil adsorption capacity of the porous PS fibrous membrane was 105.4 g g−1, and was larger than that of the conventional PS fibrous membrane after repeated five times, thus making it a promising tool for oil spill cleanups. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47262.  相似文献   

20.
The effect of heat treating gel films at different temperatures on the formation of the boehmite flaky structures on AISI 316 type austenitic stainless steel is investigated. After heating at different temperatures, the reactivity of the gel films with boiling water to form boehmite flakes was different, which resulted in different morphologies and different contact angle values after coating with hydrolyzed (heptadecafluoro-1,1,2,2-tetrahydrodecyl)trimethoxysilane (FAS). When the gel film was heat treated from 200 to 600 °C, the resulting contact angle was above 150°, indicating superhydrophobic behavior. However, when the gel film was heat treated below 200 °C as well as at 700 and 800 °C, only some boehmite flakes were formed; when the gel film was heat treated at 900 °C, no boehmite flakes were observed. In these cases the surface roughness is insufficient for the superhydrophobicity. The formation condition of the boehmite flakes by reaction of the gel film with boiling water is also tentatively discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号