首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Qamer Zia 《Polymer》2007,48(12):3504-3511
The process of isothermal annealing of nodular monoclinic crystals of isotactic polypropylene (iPP) was analyzed by atomic force microscopy (AFM) and temperature-modulated differential scanning calorimetry (TMDSC). Initially nodular and mesomorphic domains were obtained by controlled melt-crystallization at high cooling rate. Subsequent heating triggers transition from mesomorphic to monoclinic structure, and melting of unstable nodules. Annealing allows re-crystallization, which is recognized by enlargement of domains from initially about 20 nm to about 35 and 55 nm after annealing at 393 and 433 K, respectively. Furthermore, the re-crystallization process is connected with a slight change of the aspect ratio of crystals. The isothermal re-crystallization of the liquid is superimposed by aggregation of crystals, to yield blocky, and string-like objects. The direct analysis of structure on isothermal annealing by AFM is for the first time compared with the isothermal decrease of the apparent specific heat capacity, or change of enthalpy, monitored by TMDSC. The apparent specific heat capacity decreases during annealing with an identical non-linear time dependence as the directly observed growth of the crystal size. Analysis of the annealing processes at different temperatures yields proportionality between the increase of the crystal size and the reduction of the apparent specific heat capacity.  相似文献   

2.
Zhenguo Chi  Xinwei Pan  Jiarui Xu 《Polymer》2005,46(15):5840-5847
The crystallization and melting behaviors of the polyesterimide, derived from N,N′-hexane-1,6-diylbis(trimellitimides), 4,4′-dihydroxybenzophenone and p-hydroxybenzoic acid, were investigated by using polarized light microscopy (PLM), differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD). The nematic texture of the polyesterimide was observed on raising temperature to 265 °C, and the nematic phase was found to convert to isotropic melt beginning from about 300 °C, the ordered nematic micro-domains still surviving after 320 °C. Isothermal crystallization of the samples was performed at 180 °C after heating samples at various temperatures in the range of 265-360 °C, and a completed crystallization peak can appear on DSC curves up to the heating temperature of 360 °C in the presence of the nematic phase and the ordered nematic micro-domains. Non-isothermal crystallization of the samples at different cooling rate was carried out, and the melting of the resulting crystals exhibits double endotherms. It is indicated that a fast crystallization in the nematic phase forms relatively more ordered crystals, which melt at higher temperature, and a slow crystallization in the isotropic phase or in the biphasic melt produces poor crystals, which melt at lower temperature. The crystallized polyesterimide was annealed, which has a minor effect on the high-melting peak but leads to a continual shifting of the low-melting peak to higher temperature with increasing annealing temperature or annealing time. WAXD patterns indicated that the structural transform was not found during annealing process.  相似文献   

3.
Yun Hu  Harumi Sato  Yukihiro Ozaki 《Polymer》2007,48(16):4777-4785
The multiple melting behavior of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)) (HHx = 12 mol%) isothermally crystallized from the melt state has been characterized by differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. The influence of different experimental variables (such as crystallization temperature, time, and heating rate) on the multiple melting behavior of P(HB-co-HHx) was investigated by using DSC. Moreover, it has been further examined by monitoring intensity changes of the characteristic IR bands during the subsequent heating process. For the isothermally crystallized P(HB-co-HHx) samples, triple melting peaks were observed upon heating. The weak lowest-temperature DSC endotherm I always appears at the position just above the crystallization temperature, and shifts to a higher temperature linearly with the logarithm of the crystallization time. The combination of DSC and IR results suggested that the occurrence of peak I was a result of the melting of crystals formed upon long-time annealing. As for the other two main melting endothermic peaks, endotherm II corresponds to the melting of crystals formed during the primary crystallization, and endotherm III is ascribed to the melting peak of the crystals formed by recrystallization during the heating process.  相似文献   

4.
The spherulitic superstructure, crystallinity, and structure and morphology of crystals of isotactic polypropylene were controlled by the conditions of melt crystallization and related to the transmittance of visible light. Spherulitic samples, which contained monoclinic lamellae, were prepared by slow cooling of the quiescent melt at rates lower than 10 K/s and by isothermal melt crystallization at temperatures between 373 and 413 K. Nonspherulitic specimens, which contained nonlamellar mesomorphic domains, in contrast, were obtained by rapid cooling of the melt with rates faster than 100 K/s. The crystallinity and the size of crystals were furthermore fine‐tuned by subsequent annealing at elevated temperatures. Analysis of such films of different structure by ultraviolet–visible spectroscopy revealed that the light transmission was independent of (1) the fraction, (2) the internal structure, and (3) the size of the crystals. In contrast, the light transmission increased with decreasing size of spherulites and finally exceeded 90% in films of 100 μm thickness when spherulites were completely absent. The crystallinity and the structure and size of the crystals of the films of isotactic polypropylene could be adjusted within wide limits without affecting the light transmission. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Bing Na  Ping Zhao  Rongni Du  Zhenqiang Yu 《Polymer》2005,46(14):5258-5267
Various lamellar orientations of high-density polyethylene (HDPE), due to competition between bulk nucleation and interfacial nucleation, have been realized in its melt drawn blends with isotactic polypropylene (iPP) upon cooling after subjected to 160 °C for 30 min. Directed crystallization, with heterogeneous nucleation in the bulk (within domains), is defined as lamellar growth along boundary of anisotropic domains and is favored in larger domains at higher temperature (slow cooling), since overgrowth of lamellae can feel the interface rather than impingement with neighbor ones as a result of scare nuclei at higher temperature. Moreover, lamellar growth caused by directed crystallization is dependent of dimension of confinement. Due to 2D confinement of cylindrical domains, lamellae can only grow along the axis of cylinder and thus b-axis orientation is formed. While in the layered domains with 1D confinement, however, lamellae grow with the normal of (110) plane along the melt drawn direction. On the other hand, epitaxial growth of HDPE chains onto iPP lamellae is related to the surface-induced crystallization and dominated by the interfacial nucleation. Only interfacial nucleation is preferred can epitaxial growth occur. Therefore, retarded crystallization, realized by either strong confinement in finer domains or rapid cooling or both, is favorable for it.  相似文献   

6.
Temperature modulated differential scanning calorimetry (TMDSC), variable heating rate DSC, and tapping atomic force microscopy (AFM) were used to study semi-crystalline liquid crystalline polymers (LCPs). Main chain LCPs included a random copolyester (Vectra® A950) and an azomethine alternating copolymer. For the azomethine LCP the TMDSC non-reversing signal detected broad exothermic transitions associated with melting and recrystallization as the slow DSC heating scan induced surprisingly large morphological changes. Non-isothermally crystallized Vectra® and some isothermally crystallized samples at lower temperatures exhibited different levels of DSC scan induced crystal reorganization. Such crystal metastability was also studied by variable heating rate DSC and an independent technique for estimating the melting point at very rapid heating rates. The TMDSC characterization of the scan induced crystal perfection in Vectra® was substantially different than for the other polymers studied. In most cases even though crystal perfection was occurring, no clear exotherm was detected in the non-reversing signal. High temperature annealing for long times resulted in degrees of crystal perfection which could be studied by DSC with minimal scan induced reorganization. High resolution tapping AFM was used to elucidate details of crystal morphology for mechanically oriented and non-oriented Vectra® before and after annealing. Structures resembling lamellae were found to be oriented perpendicular to the chain direction in the oriented Vectra®. In the non-oriented film broad and sometimes curved ‘lamellae’ were detected. They were about 1000 nm long and between 20 and 35 nm wide, with the width increasing slightly as a function of increased annealing time at 260 °C melt crystallization conditions. Substructure of the lamellae in both oriented and non-oriented Vectra® consisted of smaller stacked crystallites which are detected by AFM studies of these surfaces.  相似文献   

7.
Tai-Yon Cho  Gert Strobl 《Polymer》2006,47(4):1036-1043
Time- and temperature-dependent SAXS and WAXS experiments on poly(l-lactide) were used (i) to establish the relationships between the crystallization temperature, the crystal thickness and the melting point, (ii) to follow recrystallization processes during heating, and (iii) to detect perturbations of the crystalline order. The studies showed several peculiarities: (i) although no solid state thickening occurs during a crystallization, crystal thicknesses are with values between 11 and 20 nm very large (ii) crystal thicknesses and long spacings have a minimum at 120 °C and increase for both higher and lower crystallization temperatures. The anomalous behavior at low crystallization temperatures is to be related with a disordering of the crystal lattice (iii) there exists an extended temperature range where crystal thicknesses change in controlled manner by recrystallization processes (iv) as it appears, a triple point where the fluid, the crystalline and a mesomorphic phase coexist is located near to normal pressure and a temperature of 190 °C.  相似文献   

8.
Ziegler-Natta and Metallocene Catalysis isotactic polypropylene with different chemical defects were isothermally crystallized at various crystallization temperatures. The crystal thickness and their corresponding melting behavior were studied using small angle X-ray scattering, atomic force microscopy, optical microscopy, and differential scanning calorimetry. The equilibrium melt temperature of the samples was calculated from the Hofmann-Weeks extrapolation for the supercooling. Two lamellar populations were distinctly observed in all cases during the crystallization process. Relatively thicker and stable lamellar crystals which melt at higher temperatures were observed with lowering the supercooling and found catalysis dependence in these crystals. During melting, no significant recrystallization of the samples has been detected for higher crystallization temperature where recrystallization processes enhance the lamellae thickness. The melting of the crystals has found strong dependence with the crystallization temperatures, the catalysis process and the nature of the defects present in the isotactic polypropylene. The increase of the crystal lamellae thickness and their melting temperature might be presumably related with the chain folding mechanism as well as the stability of the crystals formed during the isothermal crystallization process. A combined plot of SAXS and DSC results is demonstrated for the equilibrium melting temperature followed by critical analysis of the results.  相似文献   

9.
The thermal and crystal morphological properties of amorphous and melt crystallized poly(oxy‐1,4‐phenyleneoxy‐1,4‐phenylenecarbonyl‐1,4‐phenylene) (PEEK) were investigated. Two different molecular weights were studied by Temperature Modulated DSC (TMDSC) over a broad range of annealing times and temperatures. The lower molecular weight PEEK under all crystallization conditions was found to exhibit secondary crystal melting in the low endotherm region, followed by melting of primary crystals melting in the low endotherm region, followed by melting of primary crystals superimposed with a large recrystallization contribution. Primary crystal melting broadly overlapped with melting of the recrystallized species and contributed to the broad highest endotherm. Recrystallization contributions and the interpretation of TMDSC were partially confirmed by independent rapid heating rate melting point determinations and variable heating rate DSC. The higher molecular weight PEEK showed many similarities but generally had smaller levels of reorganization above the annealing temperature under most higher temperature crystallization conditions. TMDSC provides excellent resolution of recrystallization and related events compared to standard DSC. The broad and substantial exothermic recrystallization in amorphous samples was also examined, showing that recrystallization continues through the final melting region.  相似文献   

10.
A series of syndiotactic polystyrene (SPS) samples in β‐crystalline form were prepared by cooling from the melt at various rates. The effects of cooling rate from the melt, DSC heating rate and annealing on the multiple melting behaviours of β crystals were investigated by differential scanning calorimetry (DSC) and temperature modulated differential scanning calorimetry (TMDSC), from which the nature of the multiple melting behaviour was determined. The two melting endotherms of β‐form crystals were considered to arise from the occurrence of simultaneous melting, recrystallization and remelting processes in the melting region. It is suggested that the lower melting endotherm is due to the melting of imperfect β crystals originally present in the sample, whereas the higher melting endotherm comes from the melting of recrystallized SPS crystals, ie more perfect β crystals that formed during the DSC scanning process. © 2000 Society of Chemical Industry  相似文献   

11.
The multiple melting behavior of poly(ethylene terephthalate) (PET) homopolymers of different molecular weights and its cyclohexylene dimethylene (PET/CT) copolymers was studied by time-resolved simultaneous small-angle X-ray scattering/wide-angle X-ray scattering diffraction and differential scanning calorimetry techniques using a heating rate of 2 °C/min after isothermal crystallization at 200 °C for 30 min. The copolymer containing random incorporation of 1,4-cyclohexylene dimethylene terephthalate monomer cannot be cocrystallized with the ethylene terephthalate moiety. Isothermally crystallized samples were found to possess primary and secondary crystals. The statistical distribution of the primary crystals was found to be broad compared to that of the secondary crystals. During heating, the following mechanisms were assumed to explain the multiple melting behavior. The first endotherm is related to the non-reversing melting of very thin and defective secondary crystals formed during the late stages of crystallization. The second endotherm is associated with the melting of secondary crystals and partial melting of less stable primary crystals. The third endotherm is associated with the melting of the remaining stable primary crystals and the recrystallized crystals. Due to their large statistical distribution, the primary crystals melt in a broad temperature range, which includes both second and third melting endotherms. The amounts of secondary, primary and recrystallized crystals, being molten in each endotherm, are different in various PET samples, depending on variables such as isothermal crystallization temperature, time, molecular weight and co-monomer content.  相似文献   

12.
The crystallization of trans-planar α and β forms of syndiotactic polystyrene is studied through X-ray diffraction and DSC analyses of melt-crystallized samples. The factors controlling the crystallization of the two forms are analyzed. Pure α and β forms of syndiotactic polystyrene can be easily obtained setting the maximum temperature at which the melt is heated and the permanence time of the melt at this temperature. The crystallization of the α and β forms does not depend on the crystallization temperature, at least in the range of accessible crystallization temperatures, between 240 and 270 °C, but only depends on the presence of the ‘memory’ of the α form in the melt. The most important factors are, indeed, the crystalline form of the starting material used in the melt crystallization experiments and the maximum temperature of the melt. Relevant recrystallization phenomena, occurring during the melting of the samples crystallized from the melt at low crystallization temperatures, are responsible for the complex melting behavior of the α and β forms. The recrystallization involves only lamellar thickening of the crystals of the same form (α or β) and not structural transformation.  相似文献   

13.
Ya-Sen Sun 《Polymer》2006,47(23):8032-8043
Temperature-resolved small-angle X-ray scattering (SAXS) on poly(hexamethylene terephthalate) (PHT) samples crystallized from the melt yields direct information about the morphological changes in lamellar crystals and interlamellar amorphous layers upon melt-crystallization and subsequent heating to melting. Absolute intensities of these SAXS patterns were further analyzed via one-dimensional correlation and interface distribution functions. These analyses indicate that melt-crystallization at low temperature produces lamellar crystals having diverse thicknesses whereas crystallization at high temperature tends to favor growth of thick lamellar crystals with a nearly uniform distribution of thickness. When heating the PHT samples in the melting temperature region, the melting of the lamellar crystals was found to correlate well with the sequential-melting features. When these crystals are heated to higher temperatures, structural alterations from stacked lamellae to isolated lamellar crystals evolve with increasing extent of sequential melting, but, upon re-crystallization during extended annealing, the isolated lamellar crystals can pass through a reversible transition back to stacked lamellae.  相似文献   

14.
The melting of a homogeneous ethylene-1-octene copolymer after isothermal crystallization is discussed based on DSC and time-resolved SALS, SAXS and WAXD data. Two melting peaks appear in DSC suggesting the presence of two crystal fractions. All crystals grow in a lamellar habit and there is no evidence for fringed micellar or isolated block-like crystals. The high melting fraction crystallizes while segregating comonomer-rich parts into separate regions where in a later stage the low melting fraction crystallizes. The data support the view of lamellae that grow via the secondary nucleation of crystalline blocks from a preexisting layer-like mesomorphic phase with preservation of the mesomorphic layer thickness. The stability of these blocks increases due to sintering, forming lamellae that melt slightly above the crystallization temperature. The high melting fraction is generated from those lamellae that are able to reduce the crystalline-amorphous interfacial tension.  相似文献   

15.
Conformationally disordered α′-crystals of poly (l-lactic acid) were formed by crystallization of the melt at high supercooling at 95 °C. Analysis of their melting temperature as a function of the crystallinity revealed absence of crystal thickening during isothermal crystallization. Annealing of α′-crystals between the crystallization temperature of 95 °C and their zero-entropy production melting temperature of 150 °C leads to their stabilization, mainly by solid-state reorganization. Heating faster than 30 K s−1 suppresses reorganization and permits superheating of the α′-phase. Consequently, isothermal melting followed by melt-recrystallization becomes accessible. Melting is completed within few hundreds of milliseconds, and melt-recrystallization is about two orders of magnitude faster than crystallization of the isotropic melt at identical temperature. The time required for melting decreases with superheating and increases with the lateral dimension of the lamellar crystals. Laterally extended lamellae require long time for melting of the outer crystal layers, which allows stabilization of the central crystal part. These crystal remnants then serve as seed for immediate recrystallization. In case of complete melting of smaller lamellae, melt-recrystallization is retarded but still distinctly faster than cold- and melt-crystallization, due to incomplete isotropization of the melt.  相似文献   

16.
Copolyester was synthesized and characterized as having 94.4 mol% ethylene succinate units and 5.6 mol% trimethylene succinate units in a random sequence as revealed by NMR. Differential scanning calorimeter (DSC) was used to investigate the isothermal crystallization kinetics of this copolyester in the temperature range (Tc) from 30 to 80 °C. The melting behavior after isothermal crystallization was studied by using DSC and temperature modulated DSC (TMDSC) by varying the Tc, the heating rate and the crystallization time. DSC and TMDSC curves showed triple melting peaks. The melting behavior indicates that the upper melting peaks are primarily due to the melting of lamellar crystals with different stabilities. A small exothermic curve between the main melting peaks gives a direct evidence of recrystallization. As the Tc increases, the contribution of recrystallization gradually decreases and finally disappears. The Hoffman-Weeks linear plot gave an equilibrium melting temperature of 108.3 °C. The kinetic analysis of the spherulitic growth rates indicated that a regime II → III transition occurred at ∼65 °C.  相似文献   

17.
Textural changes in -phase spherulites of isotactic polypropylene (iPP) in a sequence of thermal events were examined by means of polarized light microscopy (PLM). This sequence of thermal events involves isothermal crystallization (atTc = 117 to 140 °C), followed by heating (at 5 °C/min) to nearly complete melting, and then recrystallization upon cooling (at -40°C/min) to Tc During isothermal crystallization, the a-spherulites were of mixed birefringenceat Tc = 117 to 127 °C or of negative birefringence at Tc = 140 °C; upon heating towards melting, the spherulitec birefringence consistently truned negative. More interestingly, after recrystallization during cooling back to Tc from nearcomplate melting, all spherulites exhibited positive birefringence. The recrystallization could also result in speckles of positive birefringence when Tc was high or upon slower cooling. The changes in optical texture are explained in terms of contributions from tangential (or, cross-hatched) subsidiary lamellae which (as compared to the radial dominant lamellae) are relatively low-melting but thicken and recrystallize more readily in the present temperature range.  相似文献   

18.
Deepak S. Langhe 《Polymer》2011,52(25):5879-5889
Layer multiplying coextrusion technique was used to fabricate films with hundreds of alternating layers of a crystallizable polymer, syndiotactic polypropylene (sPP), and an amorphous polymer, polycarbonate (PC). Atomic force microscopy and wide-angle X-ray scattering revealed the absence of any oriented crystal morphology of sPP in the extruded layered films. An approach of isothermal melt recrystallization of sPP nanolayers revealed the formation of oriented lamellae under the rigid confinement of hard glassy PC layers. X-ray scattering data showed that sPP crystallized as stacks of single crystal lamellae oriented parallel to the layers at high crystallization temperatures. As the crystallization temperature decreased, on-edge lamellar orientation was preferred. Formation of in-plane lamellae was attributed to heterogeneous bulk nucleation, while nucleation of on-edge lamellae was initiated at substrate interface. It was observed that as the layers thickness reduced, the orientations of both in-plane and on-edge lamellae became sharper.Detailed analysis of crystal orientations in 30 and 120 nm sPP layers was carried out. Melt recrystallization of 30 nm layers revealed formation of in-plane lamellae above 90 °C and mainly on-edge lamellae below 70 °C. At intermediate temperatures, formation of mixed crystals was reported. In 120 nm layers, crystallization temperature of 100 °C was required to form in-plane crystals, while on-edge lamellae were formed below 90 °C.We also investigated crystallization onset for on-edge and in-plane lamellar nucleation. Although, the two crystal fractions were significantly affected as a function of crystallization temperature, it was noticeable that both crystal habits were initiated at the same time. The results suggested that the relative growth rates of in-plane and on-edge crystal orientations was responsible for different fractions of the two crystal orientations at a given crystallization temperature.Oxygen transport properties of melt recrystallized sPP layers were measured. When the melt recrystallization temperature increased from 85 to 105 °C in 120 nm sPP layers, at least one order of magnitude enhancement in the barrier properties was observed. It was evident from the X-ray data that the amount of in-plane crystal fraction increased with increasing crystallization temperature. In-plane crystals acted as impermeable platelets to oxygen flux resulting in improved gas barrier properties. A similar effect was observed in 30 nm sPP layers over a temperature range of 60-105 °C. A correlation between in-plane crystal fraction and the oxygen permeability was obtained from X-ray and oxygen transport data analysis. It was shown that the permeability decreased exponentially with increasing in-plane crystal fraction.  相似文献   

19.
The double melting behavior of syndiotactic polystyrene (sPS) with β′-form crystallites was systematically investigated by several analytical techniques, including differential scanning calorimetry (DSC), polarized light microscopy (PLM), transmission electron microscopy (TEM), as well as wide-angle and small-angle X-ray scattering (WAXD, SAXS). For preventing the possible chain re-organization during intermediate melting, a high-energy electron beam (e-beam) radiation was carried out on the melt-crystallized samples to chemically cross-link the amorphous chains between lamellar crystals. The WAXD intensity profiles of the irradiated sPS samples revealed that no crystal transformation took place, and the crystallinity fraction remained unchanged for a received dose up to 2.4 MGy. As the received dose was increased, however, the high melting temperature peak was gradually diminished and finally disappeared after 1.8 MGy e-beam radiation, suggesting that the double melting phenomenon was mainly attributed to the melting/re-crystallization/re-melting behavior. The re-crystallization mechanism of sPS samples was studied using DSC and PLM to reveal the effects of heating rate and annealing temperature on the Avrami exponent and re-crystallization rate constant. In addition, the lamellar morphologies of the re-crystallized samples were also investigated by means of SAXS and TEM. With increasing heating rate or annealing temperature, the derived Avrami exponent was slightly decreased from 1.4 to 1.1; in comparison, the re-crystallization rate showed a shallow maximum at a rate of 10 °C/min, but it became evidently reduced at high annealing temperatures. Based on the morphological observations, we proposed that the re-crystallization of β-form sPS crystals involved with the presence of broad lamellar thickness distribution as well as abundant irregular loose folding chains on the lamellar surfaces, which became tightened and crystallized into the un-melted lamellae when the neighboring thinner lamellae trapped in-between were melted. Thus, the high melting temperature is dependent on the average thickness of lamellae consisting of the un-melted lamellae developed initially and thickened ones associated with re-crystallization.  相似文献   

20.
Crystallization and melting behaviors of poly(trimethylene terephthalate)   总被引:3,自引:0,他引:3  
The crystallization and melting behaviors of poly(trimethylene terephthalate) (PTT) have been studied by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), and solid-state NMR. At certain crystallization temperatures (Tc) for a given time, the isothermally crystallized PTT exhibits two melting endotherms, which is similar to that of PET and PBT. At higher crystallization temperature (Tc = 210 °C), the low-temperature endotherm is related to the melting of the original crystals, while the high-temperature endotherm is associated with the melting of crystals recrystallized during the heating. The peak temperatures of these double-melting endotherms depend on crystallization temperature, crystallization time, and cooling rate from the melt as well as the subsequent heating rate. At a low cooling rate (0.2 °C/min) or a high heating rate (40 °C/min), these two endotherms tend to coalesce into a single endotherm, which is considered as complete melting without reorganization. WAXD results confirm that only one crystal structure exists in the PTT sample regardless of the crystallization conditions even with the appearance of double melting endotherms. The results of NMR reveal that the annealing treatment increases proton spin lattice relaxation time in the rotation frame, T H, of the PTT. This phenomenon suggests that the mobility of the PTT molecules decreases after the annealing process. The equilibrium melting temperature (T m o ) determined by the Hoffman-Weeks plot is 248 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号