首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Marilia Panayiotou 《Polymer》2005,46(3):615-621
Stimuli-responsive poly(N,N′-diethylacrylamide) gels were prepared by free radical polymerisation in aqueous solution, using N,N-methylenebisacrylamide as crosslinking agent. The gels were compared with the corresponding poly(N-isopropylacrylamide)-based gels. In particular, the swelling ratio of both gel types including the effect of the crosslinker content, their swelling and deswelling kinetics, their permeability and finally their drug (insulin) storage and controlled release ability were compared. In spite of the similarity in the monomer/crosslinker ratio, the deswelling kinetics and the critical temperatures (ca. 30-32 °C in pure water), some differences could be observed. Compared to poly(N-isopropylacrylamide)-based gels, poly(N,N′-diethylacrylamide)-based gels show a broader phase transition temperature interval, a more pronounced dependency of the swelling ratio on the crosslinker content, slower reswelling kinetics, a higher ingress percentage for dextran standards ranging from 5 to 70 kD, but lower ingress percentages for proteins (BSA, insulin) and much faster drug (insulin) release kinetics. While a non-linear release kinetic was observed in the case of the poly(N-isopropylacraylamide)-based gels both in water and in PBS (phosphate buffered saline), this was not the case for the poly(N,N′-diethylacrylamide)-based gels.  相似文献   

2.
The influence of the swelling history on the swelling behavior of poly[(N-isopropylacrylamide)-co-(methacrylic acid)] P[(N-iPAAm)-co-(MAA)] random copolymers hydrogels synthesized by free radical polymerization in solution of N-iPAAm and MAA comonomers crosslinked with tetraethylene glycol dimethyl acrylate (TEGDMA) has been studied. The swelling behavior under pH 7 at 18, 29, 39 and 49 °C of this series of copolymers, previously soaked either at pH 2 or 7 has been investigated. The swelling kinetics of these two series of samples displays different behavior as function of the composition and temperature. However, the equilibrium swelling values only show slight dependences on the previous soaking pH and temperature. When samples are soaked at pH 7, then the swelling at pH 7 follows a first order kinetics, irrespective of the copolymer composition or the temperature at which the experiment has been carried out. In this case, the swelling process is very fast and depends only slightly on temperature. The first order rate constant increases with the MAA content in the hydrogel. Furthermore, the swelling rate of copolymer hydrogels soaked at pH 2, show strong dependence on composition and temperature. They follow an autocatalytic swelling kinetics due to the disruption of hydrogen bond arrangements. An initial slow water uptake is followed by an acceleration process, in which water molecules inside the gel help the next water molecules to come in. Two rate constants, a first-order rate constant and an autocatalytic one have been obtained from the kinetics analysis. They have revealed different temperature dependence which may be due to a balance between hydrophobic and hydrogen bond interactions. The temperature dependence of the swelling kinetics is stronger and more complex for copolymers treated under pH 2 than for copolymers soaked under pH 7.  相似文献   

3.
Clay-polymer hydrogel composites have been synthesized based on poly(N-isopropylacrylamide) (PNIPAM) gels containing 0.25-4 wt% of the expandable smectic clay Na-montmorillonite layered silicates (Na-MLS). The morphology of the composite gels has been studied using a polarized optical microscope. The size of Na-MLS aggregates increases with Na-MLS concentration. The swelling ratio of the Na-MLS/PNIPAM composite in water is increased at the low Na-MLS concentration but decreases as the concentration increases. Correspondingly, the shear modulus of the gel is found to exhibit a distinct minimum against clay concentration. For Na-MLS concentrations ranging from 2.0 to 3.2 wt%, the composite gels have larger swelling ratio and stronger mechanical strength than those for a pure PNIPAM. The presence of Na-MLS does not affect the value of the lower critical solution temperature (LCST) of the PNIPAM. However, the gel volume change at the LCST is first increased and then decreased upon the increase of the Na-MLS. No pH induced phase transition is observed for the Na-MLS/PNIPAM composites. The experimental results can be explained by considering that Na-MLS is physically entrapped inside rather than chemically bonded into the gel.  相似文献   

4.
Poly(N‐isopropylacrylamide‐co‐sodium acrylate) gels with N,N‐methylene bisacrylamde (BIS) as crosslinker were prepared by free radical polymerization method at the temperature of 35°C, which was just around the lower critical solution temperature (LSCT) of the hydrogels. The gels synthesized at 35°C demonstrated strong swellability and fast responseability when compared with the gels synthesized at the temperature of 0 and 18°C (below the LCST) and 50 and 80°C (above the LSCT). The response rate and swelling behavior of poly(N‐isopropylacrylamide‐co‐sodium acrylate) gels was investigated and characterized by the temperature‐dependent swelling ratio and swelling and deswelling kinetics. The swelling behavior of the gels indicated that the synthesis temperature was the main factor when the swellability concerned and also had effect on the responseability of the resulting hydrogels. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
Porous organic-inorganic (O-I) hydrogels showing a very fast temperature response, including very fast reswelling were prepared: only 6 s are needed for 72% deswelling (gel collapse) as well as for 72% reswelling. Both deswelling and reswelling are practically complete in 14 s. The gels were prepared from N-isopropylacrylamide (NIPA), N,N′-methylenebisacrylamide (BAA) and tetramethoxysilane (TMOS) by simultaneous radical polymerization and hydrolytic polycondensation of TMOS. The syntheses were carried out at temperatures below the lower critical solution temperature (LCST) of poly(NIPA) in two steps: during the first stage the temperature was held at T = +15 °C and during the second the temperature was lowered below the freezing point of the reaction mixture, T = −18 °C. The ice crystals, which grew during the second stage, served as the pore-forming agent. The best samples were obtained if the second stage was started shortly before the gel point of the reaction mixture. The introduction of the inorganic phase (silica) is necessary for the ability of fast reswelling and also results in a strong improvement of the hydrogels' mechanical properties, while the maximum swelling degree remains nearly unaffected.  相似文献   

6.
Xiaoling Ding  David Fries  Bokkyoo Jun 《Polymer》2006,47(13):4718-4725
A rapid and reliable method was presented for studying hydrogel dynamics/kinetics. Two temperature-sensitive hydrogels, poly-N-isopropylacrylamide (poly(NIPAAm)) and the copolymer of N,N-diethylacrylamide and sodium methacrylate (molar ratio=97:3, poly(NDEAAm-co-MAA)) were synthesized. The thermal-behaviors of the gels were studied through the absorbance intensities of both swollen water and gel frame components, and the peak positions of amide band along heating/cooling pathways under dynamic Fourier transform infrared (FTIR) probing. The results showed that the lower critical solution temperature (LCST) of poly(NIPAAm) is about 33-35 °C, which is consistent with reported value of ∼34 °C. Compared to poly(NIPAAm), poly(NDEAAm-co-MAA) has relatively continuous volume phase transition, starting at ∼35 °C and a better thermal-reversibility with similar swelling and deswelling profiles over a larger temperature range (10-80 °C for poly(NDEAAm-co-MAA) vs. 10-33 °C for poly(NIPAAm)). The H-bonding water along phase transition was also studied, showing a less reversibility of poly(NIPAAm) compared to poly(NDEAAm-co-MAA). In addition, FTIR spectrometer was also used to study the volume changes of poly(NDEAAm-co-MAA) under variations in environmental salinity.  相似文献   

7.
Jeong Min Jin 《Polymer》2007,48(11):3107-3115
Stable and smooth surface poly(glycidyl metharylate-co-divinylbenzene) (GMA-co-DVB) microspheres composed of various concentrations of DVB from 20 to 90 mol% in acetonitrile medium were prepared without a significant coagulum by precipitation polymerization. The number-average diameter of the microspheres linearly increases from 2.63 to 3.34 μm and the particle size distribution becomes narrower by decreasing the uniformity from 1.10 to 1.02 with the DVB concentration from 20 to 90 mol%. The yield of polymerization increased from 28.9 to 79.7% with the DVB concentration as well. The FT-IR spectrum shows the characteristic peaks at 1725-1650 cm1 assigned to the confirmation of the polymerization between GMA and DVB. No glass transition temperature and the onset of the thermal degradation temperature at higher temperature indicate that the poly(GMA-co-DVB) is crosslinked; this is evidenced by the swelling ratio measurement relevant to the crosslinking density of the poly(GMA-co-DVB). The swelling test suggested that the poly(GMA-co-DVB) particles would be a core/shell type structure composing of a highly crosslinked DVB rich-phase in the core part and slightly crosslinked GMA rich-phase in the shell part.  相似文献   

8.
Self-assembly of poly(t-butyl acrylate-co-acrylic acid)-b-poly(N-isopropylacrylamide) [P(tBA-co-AA)-b-PNIPAM], which was obtained from part hydrolysis of PtBA-b-PNIPAM synthesized by sequential atom transfer radical polymerization (ATRP) was studied. Thermo- and pH-responsive core-shell-corona (CSC) micelles with different structures were formed from (PtBA-co-PAA)-b-PNIPAM in aqueous solution. At pH 5.8 and 25 °C, the block copolymer self-assembled into spherical core-shell micelles with hydrophobic PtBA segments as the core, hydrophilic PAA/PNIPAM segments as the mixed shell. Increasing temperatures, core-shell micelles converted into CSC micelles with PtBA as the core, collapsed PNIPAM as the shell and soluble PAA as the corona. Moreover, decreasing pH at 25 °C, PAA chains collapsed onto the core resulting in CSC micelles with PtBA as the core, PAA as the shell and PNIPAM as the corona.  相似文献   

9.
When the poly(acrylic acid) (PAA) gel-1,8-diazabicyclo-[5,4,0]-7-undecene salt (DAA) was placed in N-methyl-2-pyrrolidone containing an excess of alkylamine and triphenylphosphine, selective amidation took place from the outside to give the corresponding poly(N-alkylacrylamide) gel containing a C3 alkyl chain through a DAA-poly(N-alkylacrylamide) type gel capsule consisting of a hydrophilic unreacted core part and an amidated shell layer. The amidation proceeded by a reaction mechanism similar to the unreacted-core model. Thermal properties of the resulting poly(N-alkylacrylamide) gels such as deswelling behavior and equilibrium swelling ratio in water as a function of temperature were measured. The release of methyl orange from a poly(N-alkylacrylamide) gel and the gel capsule was also examined. PAA-poly(N-alkylacrylamide) type gel capsules containing a PAA core part and thermosensitive poly(N-alkylacrylamide) shell layer, prepared by the neutralization of DAA-poly(N-alkylacrylamide) type gel capsules, showed on-off chemical release characteristics in response to stepwise temperature changes across the LCST.  相似文献   

10.
Functional poly(N-isopropylacrylamide) (PNIPAM) hydrogels were prepared by reversible addition fragmentation chain transfer (RAFT) polymerization of N-isopropylacrylamide (NIPAM) in the presence of N,N-methylenebisacylamide (BIS) as a cross-linker and 4-cyanopentanoic acid dithiobenzoate as chain transfer reagent (CTA). The swelling behaviors were investigated and the hydrogels by RAFT polymerization (RAFT gels) showed accelerated shrinking kinetics and higher swelling ratio comparing with conventional hydrogel (CG). It could be attributed to the presence of dangling chains mainly caused by CTA, which could retard the crosslinking reaction rate greatly. Another CTA, 3-(trithiocarbonyl) propanoic acid, was adopted to further investigate the effect of CTA. It showed the similar effect except the different accelerated degree to the shrinking kinetics. Furthermore, the living character of the RAFT process was used to polymerize a new batch of monomer (NIPAM) from functional RAFT gels to introduce grafted structure. The PNIPAM-g-PNIPAM hydrogels indicted further accelerated shrinking kinetics than functional backbone hydrogels.  相似文献   

11.
A series of novel thermosensitive macroporous poly (ethylene glycol) (PEG)‐co‐poly(N‐isopropylacrylamide) (PNIPAAm)‐co‐poly (ε‐caprolactone) (PCL) hydrogels were synthesized via in situ free radical polymerization. Poly(ethylene glycol diacrylate) (PEGDAc) and poly(ε‐caprolactone diacrylate) (PCLDAc) were prepared as macrocrosslinkers. All compounds were investigated by Nuclear Magnetic Resonance (NMR) and Fourier transform‐infrared spectroscopy (FT‐IR). Differential Scanning Calorimetry (DSC) results showed the lower critical solution temperatures (LCSTs) of the gels were at around 31°C. The macroporous gels not only had considerable swelling ratios, but also exhibited rapid swelling kinetics and response sensitivity. Above mentioned hydrogels showed a remarkable oscillatory swelling–deswelling transition, making them have potential application in long‐term drug delivery. POLYM. ENG. SCI., 55:223–230, 2015. © 2014 Society of Plastics Engineers  相似文献   

12.
Graft copolymer gels with different compositions were prepared by the radical polymerization of N-isopropylacrylamide (NIPAAm) and poly(2-vinylpyridine) (P2VP) macromonomers in dioxane with 1 mol% N,N′-methylenebisacrylamide (BIS) as the crosslinking agent. The graft copolymer gels were analyzed at different temperatures and pH values. They demonstrated the typical swelling behavior for poly(N-isopropylacrylamide) (PNIPAAm) gels with changing temperature. In addition to the temperature dependent measurements, the graft copolymer with a high P2VP content showed a pronounced swelling transition with changing pH value. By separating the temperature and the pH sensitive component, it was possible to obtain a gel which could be swelled independently in response to temperature and pH.  相似文献   

13.
Rapid response thermally sensitive hydrophobically modified poly(N-isopropylacrylamide) hydrogels have been synthesised successfully using a two-step polymerisation method, the initial polymerisation being carried out at 20 °C, followed by polymerisation at −28 °C for 24 h. The results show that the swelling/deswelling rates of poly[N-isopropylacrylamide-co-(di-n-propylacrylamide)] P(NIPA-co-DPAM) hydrogels prepared by two-step polymerisation are much faster than for the same type of hydrogels prepared via conventional methods (30 °C for 24 h), i.e. the time for the former xerogel to absorb 70 and 90 wt% is just 30 and 240 min, respectively, compared to the latter xerogel which takes 1600 and 2500 min to absorb the same amounts of water. During deswelling (shrinking), the hydrogel loses 95 wt% water in 1 min, compared to a timescale for the corresponding cross-linked copolymers prepared by conventional methods of about 5 h for 50 wt% water loss. Scanning electron microscopy, and flotation experiments together with swelling ratio studies reveal that the polymeric network of the former hydrogel is characterised by an open structure with more pores and higher swelling ratio but lower mechanical strength compared to the latter hydrogels. Such rapid response hydrogels have potential applications in separation and drug release technologies for example.  相似文献   

14.
Konstantinos Pagonis 《Polymer》2004,45(7):2149-2153
The behaviour of linear poly(N,N-dimethylacrylamide) (PDMAM) chains was studied by turbidimetry and viscometry in mixtures of water with the polar organic solvents methanol, dioxane and acetone. The swelling-deswelling behaviour of PDMAM gels in the same solvent mixtures was also investigated. Contrary to the behaviour in water-methanol mixtures, in water-dioxane and water-acetone mixtures a significant shrinkage of polymer chains and deswelling of polymer gels, followed by phase separation, was observed for high organic solvent fractions. Cononsolvency phenomena were found to be temperature-dependent, as demixing occurred upon decreasing temperature. This upper critical solution temperature (UCST) phase separation behaviour in mixed solvents was studied by turbidimetry and compared to the well-known lower critical solution temperature (LCST) behaviour of poly(N-isopropylacrylamide) (PNIPAM) in similar solvents mixtures.  相似文献   

15.
Yuriko Matsumura  Kaoru Iwai 《Polymer》2005,46(23):10027-10034
Poly(N-isopropylacrylamide) (PNIPAM) microgel particles labeled with 3-(2-propenyl)-9-(4-N,N-dimethylaminophenyl)phenanthrene (VDP) as an intramolecular fluorescent probe were prepared by emulsion polymerization. The thermo-responsive behavior of the VDP-labeled PNIPAM microgel particles dispersed in water was studied by turbidimetric and fluorescence analyses. The transition temperature of the VDP-labeled PNIPAM microgel particles in water determined by turbidimetric analysis was ca. 32.5 °C. The wavelength at the maximum fluorescence intensity of the VDP units linked directly to the microgel particles dramatically blue-shifted around the transition temperature. In addition it gradually blue-shifted even below the transition temperature where there was no change observed in the turbidity. These findings suggest that the gradual shrinking of microgel particles occurs with increasing temperature and the subsequent dramatic shrinking results in the increasing in the turbidity. The transition temperatures of VDP-labeled poly(N-n-propylacrylamide) and poly(N-isopropylmethacrylamide) microgel particles determined by turbidimetric analysis were ca. 23 and ca. 42.5 °C, respectively, and their thermo-responsive behavior was similar to that for the VDP-labeled PNIPAM system. In these three systems the microenvironments around the fluorescent probes above the transition temperatures became more hydrophobic than those below the transition temperature, and the estimated values of microenvionmental polarity around the VDP units on their collapsed states were almost the same.  相似文献   

16.
A crown ether derivative (4′-allyldibenzo-18-crown-6, CE) was covalently incorporated into the network of temperature sensitive poly(N-isopropylacrylamide) (PNIPA) hydrogels by copolymerization in a mixed solvent of water and tetrahydrofuran (H2O/THF). The poly(N-isopropylacrylamide-co-4′-allyldibenzo-18-crown-6) (poly(NIPA-co-CE)) hydrogels exhibited dramatically faster deswelling rates than normal PNIPA hydrogels at a temperature (50 °C) above their lower critical solution temperatures. The effect of the solvent component ratio in the mixed solvent during the copolymerization on the swelling properties of the poly(NIPA-co-CE) hydrogel was investigated. The thermosensitive poly(NIPA-co-CE) hydrogels have potential applications in the extraction of cations and separation of chiral drugs.  相似文献   

17.
The adsorption of Nile Red by poly(N‐isopropylacrylamide) (PNIPAM) gels in binary water/tetrahydrofuran solutions was investigated using absorption spectrophotometry as a function of the volume fraction of THF, φ. Due to the cononsolvency abilities of such binary solvent mixtures, deswelling of the PNIPAM gels is observed in water‐rich mixtures, 0 ≤ φ ≤ 0.6, while the gels reswell for φ > 0.6. The position of the absorption band of Nile Red before and after equilibration with the PNIPAM gels indicates that the composition of the external solvent mixture is not practically influenced by the swelling process. On the other hand, it is found that the gels can effectively adsorb Nile Red in water‐rich mixtures (φ < 0.6), whereas no significant adsorption was observed in tetrahydrofuran‐rich mixtures. In fact, about 80% of the dye is adsorbed by the PNIPAM gels, at φ = 0.2. Under these conditions, the rather shrunk PNIPAM gel offers a more convenient less polar environment for Nile Red than the water‐rich bulk solvent. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
In this study, the swelling behaviour of copolymer hydrogels of N-isopropylacrylamide (NIPAM) and itaconic acid (IA) in response to temperature and pH value of the external media was studied. The equilibrium degree of swelling for PNIPAM and PNIPAM/IA copolymers was greater at 25 °C than at 37 °C. The degree of swelling was low at low pH values. As the degree of ionization increased above the nominal pKa values of IA, the increased hydrophilicity resulted in larger degrees of swelling. At 37 °C, the PNIPAM hydrogel and some copolymers show anomalous swelling behaviour, i.e. the overshooting effect, in buffered solutions of certain pH values. A swelling-deswelling study showed that the deswelling process of the hydrogels was faster then the swelling process. According to dynamic swelling studies, the diffusion exponent and the diffusion coefficient both increase with increasing content of IA.  相似文献   

19.
Poly(ethylene oxide)-grafted poly(N-isopropylacrylamide) networks (PNIPAAm-g-PEO) were prepared via the reversible addition-fragmentation chain transfer polymerization (RAFT) of N-isopropylacrylamide with trithiocarbonate-terminated poly(ethylene oxide) and N,N′-methylenebisacrylamide as the chain transfer agent and the crosslinking agent, respectively. It was found that the PNIPAAm-g-PEO copolymer networks were microphase-separated and that PEO microdomains were dispersed in the PNIPAAm matrix. The hydrogel behavior of the PNIPAAm-g-PEO networks was investigated using swelling, deswelling and reswelling tests. The PNIPAAm-g-PEO hydrogels displayed faster responses to external temperature changes than did the control PNIPAAm hydrogel.  相似文献   

20.
Haifeng Gao  Shoukuan Fu 《Polymer》2005,46(4):1087-1093
In this paper, novel thermosensitive poly(N-isopropylacrylamide) (PNIPAM) nanocapsules with temperature-tunable diameter and permeability are reported. Firstly, the core-shell composite microparticles were synthesized by precipitation polymerization with isothiocyanate fluorescein (FITC) entrapped SiO2 as core and cross-linked PNIPAM as shell. Then, the SiO2 core was etched by hydrofluoric acid at certain condition and the pre-trapped FITC molecules remained within the inner cavity. The FITC release profile and TEM studies clearly indicate that the release behavior of FITC could be controlled effectively by the external temperature. Above the LCST of PNIPAM (32 °C), the dehydrated PNIPAM shell inhibited the release of FITC from the internal cavity while below its LCST, the fluorophore could permeate the swollen shell easily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号