首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several l,5-di-N,N′-dialkyaminoanthraquinones containing acryloyl groups were synthesized and characterized by Fourier transform infrared (FTIR) and 1H NMR spectroscopy. The photophysical and photoinduction properties of these anthraquinone derivatives were examined in solution, in combination with free radical producing agents such as hexa-aryl-bis-imidazoles (HABI). When UV–vis absorption and fluorescence spectroscopy were employed to investigate the photophysical process, results showed that the photobleaching rate of N-alkylaminoanthraquinones containing an acrylate group and HABI was much faster than the acrylate group-free N-alkylaminoanthraquinone/HABI combination. N-alkylaminoanthraquinone induced polymerization of 2-phenoxyethyl acrylate (POEA)/N-vinyl carbazole (NVC)/cellulose acetate butyrate (CAB) mixtures was studied using real-time infrared spectroscopy (RTIR). It was found that the rate of polymerization was faster if the acryloyl groups were connected to the N,N′-dialkylaminoanthraquinone structure and that 1,5-di-N,N′-dialkylaminoanthraquinone containing acryloyl groups was more sensitive to visible light system.  相似文献   

2.
Adsorption of N,N′-dimethylthiourea (DMTU) on mercury electrode from 0.1, 1 and 5 M NaClO4 was studied as the function of electrode charge density and adsorbate bulk concentration. In the study, the experimental data obtained from the measurements of differential capacity of double layer were used, the measurements of zero charge potential and surface tension at the zero charge potential. In each system studied the values of the relative surface excess increase with an increase of the concentration of N,N′-dimethylthiourea and NaClO4. The adsorption parameters were obtained from the Frumkin, virial and modified Flory-Huggins isotherms. It was found that the values of free adsorption energy, interactions constants and integral capacity depends on the supporting electrolyte concentration. The strength of the surface bond formed between N,N′-dimethylthiourea and the electrode surface and the influence of water present on the electrode surface in the obtained results of calculations were discussed.  相似文献   

3.
N-Vinylcarbazole (A)/p-bromostyrene (B) copolymers were prepared by radical copolymerization. Size exclusion chromatography (SEC) equipped with a refractometer and UV-vis spectrophotometer was found to be a very convenient technique to follow copolymerizations and to determine monomer conversions, copolymer composition, average molecular weights, polydispersity indexes versus time. The monomer reactivity ratios rA (N-vinylcarbazole) and rB (p-bromostyrene) were determined by using the Finemann-Ross (FR), the inverted Finemann-Ross (IFR), the Kelen-Tüdos (KT), and the fitting curve graphical methods. The four methods were in good agreement and led to very different values for rA (0.55) and rB (12.3) which induces a preference for the incorporation of B in the copolymer structure. Eventually, with these results the influence of initial feed on the microstructure of the copolymer has been predicted.  相似文献   

4.
Micro-fabricated temperature responsive poly(N-isopropylacrylamide) (PNIPAAm) hydrogels were produced by photolithographic patterning of photo cross-linkable polymers. These polymers were synthesized by copolymerization of N-isopropylacrylamide (NIPAAm) and 2-(dimethyl maleimido)-N-ethyl-acrylamide (DMIAAm). The patterning process of polymers with 9.2 mol% DMIAAm and film thickness below 5 μm in the dry state was able to depict a lateral resolution of 4 μm with insignificant shape change. In order to increase the adhesion of the swollen hydrogels, and thus, the resolution of a particular pattern, a special adhesion promoter based on a monochlorosilane anchor group and a chromophore head group was synthesized. If a silicon wafer surface was pretreated with the adhesion promoter, the structures were stable and well adhered even at lower cross-linking densities. The hydrogels are suitable as working substances for micro-actuators because of their thermally induced volume changes. The swelling ratio of the pattern at low temperatures increased with a decreased cross-linking density. As expected from the chemical composition of the gels, the phase transition temperature (Tc) decreased with increasing DMIAAm content. The swelling of microstructures in water in comparison to macroscopic objects occured significantly faster. This behavior was attributed to the small gel dimension but it was even more pronounced because of the sponge-like nanostructure of the hydrogels characterized by high-resolution field emission scanning electron microscopy. Suitable applications of these hydrogels are adjusting limbs in fluid micro-systems such as micro-pumps and micro-valves.  相似文献   

5.
Ethylene-vinyl alcohol copolymers (EVAL) were esterified with 3,5-dinitrobenzoyl chloride using the cycled urea N,N′-dimethylpropyleneurea (1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone) (DMPU) as the solvent. Ethylene-vinyl alcohol-vinyl-3,5-dinitrobenzoate terpolymers (EVALVDNB) and ethylene-vinyl-3,5-dinitrobenzoate copolymers (EVDNB) were obtained. Both EVAL copolymers (6-73 mol% VAL) and esterified polymers, EVDNB, and EVALVDNB dissolve in DMPU. The substitution may become total under the experimental conditions. The degree of transformation was determined by 1H NMR. EVDNB copolymers were characterised by IR spectroscopy and 1H and 13C NMR. Thermal properties were studied by DSC. The glass transition temperature of the EVDNB copolymers having a low VDNB content (up to 14 mol%) is roughly constant, whereas above 50 mol% increases. Melting temperature decreases as the VDNB content is increased, owing to the fact that the VDNB groups are excluded from the polyethylene crystal lattice.  相似文献   

6.
Radical copolymerizations of N-isopropylacrylamide (NIPAAm) and N-n-propylacrylamide (NNPAAm) in various ratios were carried out in toluene at −40 °C in the presence of 3-methyl-3-pentanol to prepare syndiotactic copolymers with racemo dyad contents of ca. 70%. It was revealed that copolymers containing more than 92.5 mol% NNPAAm units exhibited large phase-transition hysteresis of their aqueous solutions. Sequence analysis suggested that intramolecular hydrogen-bonding of contiguous NNPAAm units in syndiotactic stereosequences in the dehydrated state were responsible for induction of the large hysteresis.  相似文献   

7.
Fangping Yi 《Polymer》2009,50(2):670-198
Reversible addition-fragmentation chain transfer polymerization was employed to prepare the crosslinked poly(N-isopropylacrylamide)-graft-polystyrene networks (PNIPAAm-g-PS). Due to the immiscibility of PNIPAAm with PS, the crosslinked PNIPAAm-g-PS copolymers displayed the microphase-separated morphology. While the PNIPAAm-g-PS copolymer networks were subjected to the swelling experiments, it is found that the PS block-containing PNIPAAm hydrogels significantly exhibited faster response to the external temperature changes according to swelling, deswelling, and reswelling experiments than the conventional PNIPAAm hydrogels. The improved thermo-responsive properties of hydrogels have been interpreted on the basis of the formation of the specific microphase-separated morphology in the hydrogels, i.e., the PS blocks pendent from the crosslinked PNIPAAm networks were self-assembled into the highly hydrophobic nanodomains, which behave as the microporogens and thus promote the contact of PNIPAAm chains and water. The self-organized morphology in the hydrogels was further confirmed by photon correlation spectroscopy (PCS). The PCS shows that the linear model block copolymers of PNIPAAm-g-PS networks were self-organized into micelle structures, i.e., the PS domains constitute the hydrophobic nanodomains in PNIPAAm-g-PS networks.  相似文献   

8.
Sang Chul Jung 《Polymer》2009,50(14):3370-10547
The closed-loop phase diagram of poly N-isopropylacrylamide (PNIPA) in a water-N,N-dimethylformamide (DMF) system was measured by thermooptical analysis (TOA). The reentrant swelling behavior of N-isopropylacrylamide (NIPA) nano-sized gel particles in the water-DMF system was measured by using photon correlation spectroscopy (PCS) technique. Theoretically, a modified double lattice model (MDL) can be used to describe the closed-loop phase behavior of linear PNIPA in water-DMF systems. For crosslinked NIPA nano-sized gel particles in a water-DMF system, we combined MDL theory for the mixing contribution and Flory-Erman theory for the elastic contribution. Molecular interaction parameters obtained from the PNIPA solution were used to directly predict the swelling-ratio curves for the NIPA gel. Using our model, the calculated results were in good agreement with the experimental data using only one adjustable parameter.  相似文献   

9.
《Polymer》2002,43(16):4341-4348
Thermo- and pH-responsive stimuli hydrogels based on N-isopropylacrylamide (N-iPAAm) and methacrylic acid (MAA) have been synthesized and their swelling behaviour studied as a function of composition, pH and temperature. Copolymers varying in composition have been obtained by copolymerizing these two monomers and interpenetrating polymer networks (IPNs) of P(MAA) and P(N-iPAAm) by the sequential method. Temperature and pH have been changed in the ranges from 25 to 40 °C and from 2 to 9, respectively. The swelling behaviour of the hydrogels depends on the nature of the polymer and the environmental conditions, namely pH and temperature. Copolymer gels under basic conditions exhibit higher degree of swelling than the homopolymer ones. The disruption of the complexes dominates the kinetic swelling of MAA enriched gels under basic conditions. The hydrogen bond formation between carboxyl and amide groups has been made clear through the dynamic swelling behaviour of copolymers under acidic conditions. IPNs reduce their ability to swell in water with increasing P(N-iPAAm) content because of the formation of hydrophobic interpolymer complexes through hydrogen bonding. Lower critical solution temperature occurs only in the enriched N-iPAAm copolymers under acidic conditions when the MAA carboxyl groups are unionized.  相似文献   

10.
Xingfeng Zhu  Wei Chen  Jian Dong 《Polymer》2010,51(14):3054-408
Poly(N-vinylpyrrolidone) (PVP) hydrogels have become increasingly important materials for pharmaceutical and biomedical applications. UV-light initiated oxidative crosslinking of PVP represents a novel method for producing PVP based hydrogel materials. However, the mechanism of the gelation by this approach is poorly understood. In this study, the reaction mechanism for the crosslinking process is investigated by FTIR, Raman, and solid-state CP/MAS NMR techniques. Both FTIR and Raman spectra indicate that in the process of free radical oxidative crosslinking, the pyrrolidone ring is partially transformed into a succinimide ring. Solid-state NMR data have confirmed this change, and provided evidence that stable intermediates of 4-hydroperoxy-pyrrolidone (PVP-OOH) and its accompanied 4-hydroxy-pyrrolidone (PVP-OH) are formed. The pyrrolidone hydroperoxide intermediate can account for the efficient crosslinking, producing a sufficient level of macroradicals to form stable hydrogels.  相似文献   

11.
Radical polymerization of N-isopropylacrylamide (NIPAAm) in CHCl3 at low temperatures in the presence of pyridine N-oxide (PNO) was investigated. An isotactic poly(NIPAAm) with meso diad content of 61% was successfully prepared at −60 °C in the presence of a two-fold amount of PNO. Thermodynamic analysis suggested that the isotactic-specificity was entropically induced, probably due to conformational fixation near the propagating chain-end through coordination by PNO.  相似文献   

12.
Vildan OzturkOguz Okay 《Polymer》2002,43(18):5017-5026
A series of temperature sensitive hydrogels was prepared by free-radical crosslinking copolymerization of N-t-butylacrylamide (TBA) and acrylamide in methanol. N,N′-methylenebis(acrylamide) was used as the crosslinker. It was shown that the swelling behavior of the hydrogels can be controlled by changing the amount of TBA units in the network chains. Hydrogels immersed in dimethylsulfoxide (DMSO)-water mixtures exhibited reentrant swelling behavior, in which the gels first deswell then reswell if the DMSO content of the solvent mixture is continuously increased. In water over the temperature range of 2-64 °C, hydrogels with less than 40[percnt] TBA by mole were in a swollen state while those with TBA contents higher than 60[percnt] were in a collapsed state. Hydrogels with 40-60[percnt] TBA exhibited swelling-deswelling transition in water depending on the temperature. The temperature interval for the deswelling transition of 60[percnt] TBA gel was found to be in the range from 10 to 28 °C, while for the 40[percnt] TBA gel, the deswelling started at about 20 °C and continued until the onset of the hydrolysis of the network chains at around 64 °C. It was shown that the Flory-Rehner theory of swelling equilibrium provides a satisfactory agreement to the experimental swelling data of the hydrogels, provided that the sensitive dependence of the χ parameter on both temperature and polymer concentration is taken into account.  相似文献   

13.
Konstantinos Pagonis 《Polymer》2004,45(7):2149-2153
The behaviour of linear poly(N,N-dimethylacrylamide) (PDMAM) chains was studied by turbidimetry and viscometry in mixtures of water with the polar organic solvents methanol, dioxane and acetone. The swelling-deswelling behaviour of PDMAM gels in the same solvent mixtures was also investigated. Contrary to the behaviour in water-methanol mixtures, in water-dioxane and water-acetone mixtures a significant shrinkage of polymer chains and deswelling of polymer gels, followed by phase separation, was observed for high organic solvent fractions. Cononsolvency phenomena were found to be temperature-dependent, as demixing occurred upon decreasing temperature. This upper critical solution temperature (UCST) phase separation behaviour in mixed solvents was studied by turbidimetry and compared to the well-known lower critical solution temperature (LCST) behaviour of poly(N-isopropylacrylamide) (PNIPAM) in similar solvents mixtures.  相似文献   

14.
Wei XueIan W Hamley 《Polymer》2002,43(10):3069-3077
Hydrogels were prepared by free radical polymerisation in aqueous solution of N-isopropylacrylamide (NIPA) and of NIPA with di-n-propylacrylamide (DPAM), di-n-octylacrylamide (DOAM) or di-dodecylacrylamide (DDAM) as hydrophobic comonomer. N,N-methylene bisacrylamide (BIS) and glyoxal bis(diallyacetal) (GLY) were used as crosslinkers. A series of copolymers with three different comonomer contents was synthesised and for some polymers three different crosslinker concentrations were employed. The swelling equilibrium of these hydrogels was studied as a function of temperature, hydrophobic comonomer species and content in aqueous solutions of the anionic surfactant sodium dodecyl sulfate (SDS). In pure water the gels showed a discontinuous volume phase transition at 33 and 30 °C for PNIPA and hydrophobically modified PNIPA copolymeric hydrogels, respectively. The swelling ratio r and the transition temperature (LCST) increased at low temperatures with the addition of SDS, this is ascribed to the conversion of non-ionic PNIPA gels into polyelectrolyte gels through the binding of SDS. At SDS concentration below 0.5 wt%, gels exhibited a single discontinuous volume transition at 36-38 °C. However, for SDS concentration above 0.5 wt%, two discontinuous volume transitions at 36-40 and 70 °C were observed. Additionally, the replacement of BIS by the novel octafunctional crosslinker glyoxal bis(diallylacetal) (GLY) yielded an increase in the swelling ratio.  相似文献   

15.
1H NMR spectroscopy was used to investigate temperature-induced phase transitions in D2O solutions of poly(N-isopropylmethacrylamide) (PIPMAm)/poly(N-isopropylacrylamide) (PIPAAm) mixtures and P(IPMAm/IPAAm) random copolymers of various composition on molecular level. While two phase transitions were detected for PIPMAm/PIPAAm mixtures, only single phase transition was found for P(IPMAm/IPAAm) copolymers. The phase transition temperatures of PIPAAm component (appears at lower temperatures) are not affected by the presence of PIPMAm in the mixtures; on the other hand, the temperatures of the phase transition of PIPMAm component (appears at higher temperatures) are affected by the phase separation of the PIPAAm component and depend on concentration of the solution. For P(IPMAm/IPAAm) random copolymers, a departure from the linear dependence of the transition temperatures on the copolymer composition was found for a sample with 75 mol% of IPMAm monomeric units.  相似文献   

16.
D AvoceH.Y Liu  X.X Zhu 《Polymer》2003,44(4):1081-1087
Copolymers of N-alkylacrylamides with acrylamide or methacrylamide derivatives of cholic acid have been prepared to obtain copolymers with desired thermosensitivity and enhanced hydrophilicity. The thermosensitivity of these copolymers depends on their chemical composition as studied by microcalorimetry, differential scanning calorimetry and UV-visible spectroscopy. The lower critical solution temperature and the enthalpy change of the phase separation process of the copolymers in water decreased with increasing content of the bile acid residues in the polymers.  相似文献   

17.
Certain cellulose samples, especially those of higher molecular weight, are initially insoluble in N,N-dimethylacetamide (DMAc, 1)/lithium chloride, which is a very common solvent system for cellulosic materials. According to a common protocol, heating or refluxing these samples in DMAc, or in DMAc containing dissolved LiCl, represents one of several so-called ‘activation’ procedures, which are aimed at facilitating subsequent dissolution. In the present work, it is shown that the improved solubility achieved by this method is not only caused by a better activation or improved accessibility of the pulp, but also by a progressing degradation of the cellulosic material (DP loss).The degradation of cellulose in DMAc or DMAc/LiCl is due to two separate chemical processes. The first one, involving N,N-dimethylacetoacetamide (2) which is the primary condensation product of DMAc, causes a slow degradation by thermal endwise peeling. The glucose units peeled off the reducing end are released as furan structures (3). The mechanism appears to be a thermal cleavage of the glycosidic bond, which becomes quite selective towards the proximal anhydroglucose unit by a neighbor group-assisted effect according to quantum-chemical calculations. Due to its stepwise and thus slow mechanism, this pathway contributes only insignificantly to the overall cellulose degradation.The second degradation mechanism causes random chain cleavage and thus pronounced and rather fast changes in the molecular weight distribution. It involves N,N-dimethylketeniminium ions (5), whose presence in DMAc/LiCl at temperatures above 80 °C—the coalescence temperature of DMAc as determined by dynamic NMR—was unambiguously demonstrated by specific trapping in a thermal [2+2]-cycloaddition with lipophilic olefins. The keteniminium ion is an extremely reactive electrophile, which is able to directly cleave glycosidic bonds. The detrimental effect of this intermediate on the integrity of cellulosic pulps was confirmed by addition of an external degrading agent of the keteniminium type. Also the precursor compound, a ketene aminal, was confirmed to be present in heated DMAc or DMAc/LiCl by trapping with allyl alcohol in a spontaneous Claisen-type rearrangement.  相似文献   

18.
Anne-Laurence Dupont 《Polymer》2003,44(15):4117-4126
Activation and dissolution in lithium chloride/N,N-dimethylacetamide (LiCl/DMAc) of cellulose from paper substrates are studied. The importance of the multiple parameters involved such as salt concentration, sample source and preparation is shown in a literature review. The experiments are carried out in order to perfect the method of activation and dissolution of paper containing different kinds of additives, typically found in historic papers. The suitability and efficiency obtained in the different trials are evaluated. The final procedure involves the activation by solvent exchange, with a water/methanol/DMAc sequence, followed by dissolution in 8% LiCl/DMAc at 4 °C. A study of the stability of the cellulose solutions in the experimental conditions showed that no degradation nor aggregation occurred during the solvation process and even after several months and confirmed the non-aggressiveness of LiCl/DMAc.  相似文献   

19.
Rapid response thermally sensitive hydrophobically modified poly(N-isopropylacrylamide) hydrogels have been synthesised successfully using a two-step polymerisation method, the initial polymerisation being carried out at 20 °C, followed by polymerisation at −28 °C for 24 h. The results show that the swelling/deswelling rates of poly[N-isopropylacrylamide-co-(di-n-propylacrylamide)] P(NIPA-co-DPAM) hydrogels prepared by two-step polymerisation are much faster than for the same type of hydrogels prepared via conventional methods (30 °C for 24 h), i.e. the time for the former xerogel to absorb 70 and 90 wt% is just 30 and 240 min, respectively, compared to the latter xerogel which takes 1600 and 2500 min to absorb the same amounts of water. During deswelling (shrinking), the hydrogel loses 95 wt% water in 1 min, compared to a timescale for the corresponding cross-linked copolymers prepared by conventional methods of about 5 h for 50 wt% water loss. Scanning electron microscopy, and flotation experiments together with swelling ratio studies reveal that the polymeric network of the former hydrogel is characterised by an open structure with more pores and higher swelling ratio but lower mechanical strength compared to the latter hydrogels. Such rapid response hydrogels have potential applications in separation and drug release technologies for example.  相似文献   

20.
Rodrigo París 《Polymer》2009,50(9):2065-1226
A series of pH-responsive hydrogels based on N-isopropylacrylamide (N-iPAAm), methacrylic acid (MAA) and poly(ethylene glycol) monomethyl ether monomethacrylate macromonomer (PEGMEMA), P(N-iPAAm-co-MAA-co-PEGMEMA) random terpolymers, were synthesized and their swelling behaviour studied as a function of both monomer composition and previous swelling treatment. The swelling kinetic curves were followed using gravimetric, photographic and magnetic resonance imaging (MRI) techniques, which provide spatial and temporal resolution. The swelling behaviour was non-Fickian at pH 7, being this fact more relevant when the samples were pre-soaked in pH 2 solution. Low pH promotes hydrogen bond arrangements that disrupt at pH 7, where sigmoidal swelling curves were observed. The sigmoidal shape of the curves increases as well as the swelling time with increasing N-iPAAm/PEGMEMA ratio. This indicates that hydrogen bond arrangements between MAA and N-iPAAm are stronger that those formed by MAA and PEGMEMA. The influence of the polymer composition on the hydrogen bond arrangements was also studied from the swelling kinetics curves at different pH media, observing that the swelling rate, the swelling curve shape and the whole amount of water absorbed were clearly dependent on this parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号