首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article describes a facile approach for the synthesis of water-soluble ABC triblock copolymers through a combination of atom transfer radical polymerization (ATRP) and click reactions. The bromine-terminated MPEO–PtBA–Br precursor was first prepared by ATRP, and converted into the azido-terminated precursor MPEO–PtBA–N3 by a simple nucleophilic substitution. Then, MPEO–PtBA–PzLLys triblock copolymers were synthesized via the click reaction of MPEO–PtBA–N3 and the propargyl-terminated poly(Nε-carbobenzoxy-l-lysine)s (PzLLys). The water-soluble MPEO–PAA–PLLys ABC triblock copolymers were obtained from the hydrolysis process. The structures of these block copolymers were characterized by NMR, IR and GPC.  相似文献   

2.
Well-defined statistical, gradient and block copolymers consisting of isobornyl acrylate (IBA) and n-butyl acrylate (nBA) were synthesized via atom transfer radical polymerization (ATRP). To investigate structure-property correlation, copolymers were prepared with systematically varied molecular weights and compositions. Thermomechanical properties of synthesized materials were analyzed via differential scanning calorimetry (DSC), dynamic mechanical analyses (DMA) and small-angle X-ray scattering (SAXS). Glass transition temperature (Tg) of the resulting statistical poly(isobornyl acrylate-co-n-butyl acrylate) (P(IBA-co-nBA)) copolymers was tuned by changing the monomer feed. This way, it was possible to generate materials which can mimic thermal behavior of several homopolymers, such as poly(t-butyl acrylate) (PtBA), poly(methyl acrylate) (PMA), poly(ethyl acrylate) (PEA) and poly(n-propyl acrylate) (PPA). Although statistical copolymers had the same thermal properties as their homopolymer equivalents, DMA measurements revealed that they are much softer materials. While statistical copolymers showed a single Tg, block copolymers showed two Tgs and DSC thermogram for the gradient copolymer indicated a single, but very broad, glass transition. The mechanical properties of block and gradient copolymers were compared to the statistical copolymers with the same IBA/nBA composition.  相似文献   

3.
This paper reports the synthesis of an amphiphilic copolymer from linseed oils and its successive auto-association in water into pH-sensitive micelles. An original ATRP lipoinitiator is first designed from linseed oil in two steps. tert-butyl acrylate (tBA) polymerization is consequently initiated from this original initiator and amphiphilic copolymers are obtained after subsequent acidolysis of the PtBA block into poly(acrylic acid) (PAA). The ability of a lipid-b-PAA copolymer to auto-associate in water is finally investigated through different techniques (Fluorescence, Surface Tension, QELS). This copolymer forms well-defined micelles in acidic media with a low critical micellar concentration (cmc) of 7.6 mg L?1 and dissociates when the pH is raised above 7.  相似文献   

4.
L. Krystin Breland 《Polymer》2008,49(5):1154-1163
Poly(isobutylene-b-styrene) (PIB-PS) copolymers and polyisobutylene (PIB) homopolymers were synthesized via quasiliving carbocationic polymerization from the initiator 3,3,5-trimethyl-5-chlorohexyl acetate, which contains a protected hydroxyl group. The PIB block was created at −70 °C in a methylcyclohexane/methyl chloride (60:40) cosolvent system, using TiCl4 as co-initiator, followed optionally by sequential addition of styrene. Using a strong base, the acetate head group of the resulting block copolymer was cleaved to yield a hydroxyl group, which was subsequently esterified with the branching agent 2,2-bis((2-bromo-2-methyl)propionatomethyl)propionyl chloride (BPPC) to create dual initiating sites for atom transfer radical polymerization (ATRP). ATRP of tert-butyl acrylate was carried out using a Cu(I)Br/1,1,4,7,7-pentamethyldiethylenetriamine (PMDETA) catalyst system. In some cases, the ester side chains of the poly(tert-butyl acrylate) (PtBA) blocks were cleaved to create poly(acrylic acid) (PAA) blocks. The final miktoarm star polymers had compositions that were very close to theoretical.  相似文献   

5.
Jun Yoo 《Polymer》2011,52(12):2499-2504
The synthesis of comb block copolymers by ring opening metathesis polymerization (ROMP), ring opening polymerization (ROP), and atom transfer radical polymerization (ATRP) is described. Block copolymers were synthesized by the ROMP of oxanorbornene and norbornene monomers followed by hydrogenation of the olefins along the backbone. One block of these diblock copolymers possessed initiators either for the ROP of (3S)-cis-3,6-dimethyl-1,4-dioxane-2,5-dione or the ATRP of butyl acrylate. The synthesis and characterization of comb polymers with arms composed of poly(lactic acid) and poly(butyl acrylate) are described. These polymers had well-defined peaks in the size exclusion chromatography spectra which indicated that no homopolymers were synthesized. A comb block copolymer with polymeric arms of poly(styrene-b-vinylpyridine) is described. Vinylpyridine was polymerized from a comb polymer with poly(styrene) arms by ATRP at high dilution of the comb polymer.  相似文献   

6.
Katrien V. Bernaerts 《Polymer》2005,46(19):8469-8482
A new set of block copolymers containing poly(methyl vinyl ether) (PMVE) on one hand and poly(tert-butyl acrylate), poly(acrylic acid), poly(methyl acrylate) or polystyrene on the other hand, have been prepared by the use of a novel dual initiator 2-bromo-(3,3-diethoxy-propyl)-2-methylpropanoate. The dual initiator has been applied in a sequential process to prepare well-defined block copolymers of poly(methyl vinyl ether) (PMVE) and hydrolizable poly(tert-butyl acrylate) (PtBA), poly(methyl acrylate) (PMA) or polystyrene (PS) by living cationic polymerization and atom transfer radical polymerization (ATRP), respectively. In a first step, the Br and acetal end groups of the dual initiator have been used to generate well-defined homopolymers by ATRP (resulting in polymers with remaining acetal function) and living cationic polymerization (PMVE with pendant Br end group), respectively. In a second step, those acetal functionalized polymers and PMVE-Br homopolymers have been used as macroinitiators for the preparation of PMVE-containing block copolymers. After hydrolysis of the tert-butyl groups in the PMVE-b-ptBA block copolymer, PMVE-b-poly(acrylic acid) (PMVE-b-PAA) is obtained. Chain extension of the AB diblock copolymers by ATRP gives rise to ABC triblock copolymers. The polymers have been characterized by MALDI-TOF, GPC and 1H NMR.  相似文献   

7.
Dong Yang  Yongjun Li  Sen Zhang 《Polymer》2010,51(8):1752-1760
A series of well-defined binary hydrophilic-fluorophilic diblock copolymers were synthesized by successive atom transfer radical polymerization (ATRP) of methoxylmethyl acrylate (MOMA) and 4-(4′-p-tolyloxyperfluorocyclobutoxy)benzyl methacrylate (TPFCBBMA) followed by the acidic selective hydrolysis of the hydrophobic poly(methoxymethyl acrylate) (PMOMA) segment into the hydrophilic poly(acrylic acid) (PAA) segment. ATRP of MOMA was initiated by 2-MBP at 50 °C in bulk to give two different PMOMA homopolymers with narrow molecular weight distributions (Mw/Mn ≤ 1.15). PMOMA-b-PTPFCBBMA well-defined diblock copolymers were synthesized by ATRP of TPFCBBMA at 90 °C in anisole using Br-end-functionalized PMOMA homopolymer as macroinitiator and CuBr/PMDETA as catalytic system. The final PAA-b-PTPFCBBMA amphiphilic diblock copolymers were obtained via the selective hydrolysis of PMOMA block in dilute HCl without affecting PTPFCBBMA block. The critical micelle concentrations (cmc) of PAA-b-PTPFCBBMA amphiphilic copolymers in aqueous media were determined by fluorescence spectroscopy using pyrene as probe and these diblock copolymers showed different micellar morphologies with the changing of the composition.  相似文献   

8.
Cellulose diacetate (CDA) was acylated with 2-bromoisobutyryl bromide (BriBr) or with dichloroacetyl chloride (ClAcCl) giving polyfunctional macroinitiators for ATRP grafting of styrene (St), MMA and butyl acrylate (BuA). Under various reaction conditions, macroinitiators with variable degrees of functionalisation could be prepared. The macroinitiators with 2-bromoisobutyryl (BriB) groups were grafted with St or BuA, those with dichloroacetyl (ClAc) functions were used for graft copolymerization of MMA. Graft copolymers with chemically different grafts as well as tunable lengths and densities of grafts were synthesized in this way. Poly(CDA-g-St) and poly(CDA-g-MMA) were further used as macroinitiators of BuA polymerization, giving poly[CDA-g-(St-b-BuA)] and poly[CDA-g-(MMA-b-BuA)] graft copolymers with diblock grafts.  相似文献   

9.
Diblock copolymers of methyl methacrylate (MMA) with 2-ethylhexyl, butyl, ethyl or tert-butyl acrylate (EtHA, BuA, EtA, t-BuA) have been prepared by the ligated anionic polymerization initiated with methyl 2-lithioisobutyrate (MIB-Li) in the presence of an excess of Li tert-butoxide (t-BuOLi) in toluene/THF mixture at −60 or −78 °C. The copolymers, prepared at −60 °C, show MWD with a hint of bimodality, indicating partial deactivation of the living PMMA upon addition of acrylic monomer. At −78 °C, the extent of this deactivation is distinctly lower, the formed block copolymers, in particular, poly(MMA-b-EtHA), have unimodal MWD and exhibit tails only in the lower-molecular-weight region. Poly(MMA-b-EtHA)s were extracted with acetonitrile dissolving PMMA; very small parts of the crude products dissolved, whereas prevailing parts remained as solids documenting thus formation of block copolymer in a high yield. Surprisingly, the highest amount of self terminated PMMA was found in block copolymerization of MMA with t-BuA at both the temperatures, the products of which had clearly bimodal MWDs. This finding is shortly discussed on the basis of relatively slow propagation of t-BuA in comparison with EtHA, BuA and EtA.  相似文献   

10.
Jeremy M. Rathfon 《Polymer》2008,49(7):1761-1769
Polymers exhibiting a thermoresponsive, lower critical solution temperature (LCST) phase transition have proven to be useful for many applications as “smart” or “intelligent” materials. A series of poly(N-isopropylmethacrylamide) (PNIPMAM) polymer, poly(N-isopropylmethacrylamide)-b-poly(acrylic acid) (PNIPMAM-b-PAA) diblock, and poly(acrylic acid)-b-poly(N-isopropylmethacrylamide)-b-poly(acrylic acid) (PAA-b-PNIPMAM-b-AA) triblock copolymer samples were synthesized via ATRP. A facile post-functionalization route was developed that uses an activated ester functionality to convert poly(N-methacryloxysuccinimide) (PMASI) blocks to LCST capable polyacrylamide, while poly(t-butyl acrylate) (PtBA) blocks were converted to water-soluble poly(acrylic acid) (PAA). The post-functionalization was monitored via 1H NMR and ATR-FTIR. The aqueous solution properties were explored and the PNIPMAM polymers were shown to have a LCST phase transition varying from 35 to 60 °C. The ability to synthesize block copolymers that are thermoresponsive and water-soluble will be of great benefit for broader applications in drug delivery, bioengineering, and nanotechnology.  相似文献   

11.
We report the dispersed nanoplates prepared from bulk self-assembly of diblock copolymer poly(tert-butyl acrylate)-block-poly(2-cinnamoyloxyethyl methacrylate) (PtBA-b-PCEMA) with PCEMA as a UV-crosslinkable segment and PtBA as a hydrolysable segment. PtBA-b-P(HEMA-TMS) was synthesized through a two step ATRP and functionalized to PtBA-b-PCEMA. The diblock copolymer with 55.7 % weight ratio of PCEMA bulk was assembled into lamellar morphology and characterized by small-angle X-ray scattering (SAXS). After UV-crosslinking, the dispersed nanoplates were prepared by dispersing the crosslinked bulk self-assembly in a good solvent of the PtBA segment and characterized by transmission electron microscopy (TEM). The dispersed nanoplates have crosslinked PCEMA as the cores and the solubilized PtBA as the coronas. After hydrolysis of the PtBA segment into poly(acrylic acid) (PAA), the crosslinked nanoobjects could be dispersed in water and showed reversible pH-responsibility.  相似文献   

12.
A noncombustible tough poly(vinyl chloride) (tPVC) was prepared by suspension‐grafted copolymerization of poly(2‐ethylhexyl acrylate) (poly‐EHA; elastomer) with vinyl chloride (VC). Elastomer (poly‐EHA) was prepared by emulsion, mainly homopolymerization of 2‐ethylhexyl acrylate at a temperature of 30 ± 0.1°C in the presence of a redox system and with the advantage of dosing the monomer into two portions. Grafted‐suspension copolymerization of poly‐EHA with VC was carried out at 54 ± 0.1°C, keeping other reaction conditions only slightly modified in comparison with those for the polymerization of pure VC. An optimum content of the incorporated poly‐EHA in PVC was found to be in the range 7.5–8.5 wt %, whereas notched toughness of 85–87 kJ m?2 was reached. Both below and above the found range of the content of poly‐EHA, the toughness decreases. A copolymer prepared by a direct‐emulsion copolymerization of 2‐EHA and VC (poly‐EHA‐co‐VC) exhibited worse mechanical properties than the copolymer prepared by two polymerization steps. On the basis of experimental results, effects of the reaction procedure on the properties of resulting material are described. In addition to good mechanical properties, tPVC also shows its noncombustibly. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2355–2362, 2002  相似文献   

13.
Kui Xu  Yanxue Wang  LiJia An  Ruke Bai 《Polymer》2006,47(13):4480-4484
The synthesis of a novel ABC ternary segregated H-shaped copolymer is described, of which a central poly(ethylene glycol) (PEG) chain is terminated on both sides by polystyrene (PS) and poly(tert-butylacrylate) (PtBA) chains. The synthetic procedure involves functionalization of PEG by 2-bromosuccinic anhydride followed by esterification of 1,6-hexanediol, which gives its ends the bifunctional nature that allows sequential growth of two PS, then two PtBA arms via atom transfer radical polymerization (ATRP). The resulting segregated H-shaped copolymers were characterization by NMR spectroscopy and gel permeation chromatography (GPC). All these copolymers were affirmed to have well-defined structures and narrow molecular weight distributions.  相似文献   

14.
Amphiphilic ethyl cellulose (EC)-g-poly(acrylic acid) (PAA) copolymers were synthesized by atom transfer radical polymerization (ATRP). Firstly, ethyl cellulose macro-initiators with the degree of the 2-bromoisobutyryl substitution of 0.04 and 0.25 synthesized by the esterification of the hydroxyl groups remained in EC macromolecular chains and the 2-bromoisobutyryl bromides. Secondly, tert-butyl acrylate was polymerized by ATRP with the ethyl cellulose macro-initiator and EC-g-PtBA copolymers were prepared. Finally, the EC-g-PAA copolymers were prepared by hydrolyzing tert-butyl group of the EC-g-PtBA copolymers. The grafting copolymers were characterized by means of GPC, 1H NMR and FTIR spectroscopies. The molecular weight of graft copolymers increased during the polymerization and the polydispersity was low. A kinetic study showed that the polymerization was first-order. Meanwhile, EC-g-PAA copolymers were self-assembled to micelles or particles with diameters of 5 nm and 100 nm in water (pH = 10) when the concentration was 1.0 mg/ml.  相似文献   

15.
This paper introduces the new synthetic methodology of polyolefin-based block and graft copolymers with polar segments [e.g., polystyrene and poly(meth)acrylates]. Various brominated polyolefins were prepared by bromination of polyolefins with N-bromosuccinimide. The resulting brominated polyolefins were able to initiate the controlled radical polymerization of polar monomers, such as methyl methacrylate, ethyl acrylate, t-butyl acrylate, styrene and 2-(dimethylamino)ethyl acrylate, using a CuBr/N,N,N′,N″,N″-pentamethyldiethylenetriamine catalyst system, leading to a variety of polyolefin-based copolymers with a different content of the corresponding polar segment. Because of the accessible synthesis of polyolefin macroinitiators, this synthetic methodology is expected to result in the preparation of a wide range of polyolefin-based block and graft copolymers.  相似文献   

16.
Bifunctional polystyrene macroinitiators, having various molecular weights, were prepared by atom transfer radical polymerization (ATRP), initiated with bifunctional initiator 1,3-bis{1-methyl-1[(2,2,2-trichloroethoxy) carbonylamino]ethyl}benzene in conjunction with CuCl catalyst and polyamine ligands. These macroinitiators were subsequently used for ATRP of tert-butyl acrylate (t-BuA), giving BAB triblocks poly[(t-BuA)-b-(Sty)-b-(t-BuA)] as precursors of amphiphilic copolymers. Both the polymerization steps proceeded as controlled processes with linear semi-logarithmic conversion plots and lengths of the blocks following theoretical predictions. Hydrolysis of outer poly(t-BuA) blocks led to triblock copolymers with the central polystyrene block and outer blocks of poly(acrylic acid), the molecular weights of which ranged from ca. 5 × 103 to almost 1 × 105 Da.  相似文献   

17.
Jean Ruehl 《Polymer》2007,48(9):2564-2571
Bidirectional alkoxyamine 2 was synthesized and used as the initiator in the polymerization of styrene (S), n-butyl acrylate (nBA), t-butyl acrylate (tBA), isoprene (I), and dimethylacrylamide (DMA). A variety of symmetrical ABA triblock copolymers were prepared, ranging in size from 5 to 59 kDa. Kinetics studies and gel permeation chromatography (GPC) confirmed the “living” nature of these polymerizations. Trifluoroacetic acid was used to convert the PtBA blocks of these polymers into poly(acrylic acid) (PAA) blocks, forming ABA amphiphilic triblock copolymers. AFM images of PAA-b-PnBA-b-PAA and PAA-b-PS-b-PAA triblock copolymers ionized by the addition of 2,2′-(ethylenedioxy)bis(ethylamine) show evidence of self-assembly.  相似文献   

18.
Self-assembly of poly(t-butyl acrylate-co-acrylic acid)-b-poly(N-isopropylacrylamide) [P(tBA-co-AA)-b-PNIPAM], which was obtained from part hydrolysis of PtBA-b-PNIPAM synthesized by sequential atom transfer radical polymerization (ATRP) was studied. Thermo- and pH-responsive core-shell-corona (CSC) micelles with different structures were formed from (PtBA-co-PAA)-b-PNIPAM in aqueous solution. At pH 5.8 and 25 °C, the block copolymer self-assembled into spherical core-shell micelles with hydrophobic PtBA segments as the core, hydrophilic PAA/PNIPAM segments as the mixed shell. Increasing temperatures, core-shell micelles converted into CSC micelles with PtBA as the core, collapsed PNIPAM as the shell and soluble PAA as the corona. Moreover, decreasing pH at 25 °C, PAA chains collapsed onto the core resulting in CSC micelles with PtBA as the core, PAA as the shell and PNIPAM as the corona.  相似文献   

19.
Core-shell cylindrical polymer brushes with poly(t-butyl acrylate)-b-poly(n-butyl acrylate) (PtBA-b-PnBA) diblock copolymer side chains were synthesized via ‘grafting from’ technique using atom transfer radical polymerization (ATRP). The formation of well-defined brushes was confirmed by GPC and 1H NMR. Multi-angle light scattering (MALS) measurements on brushes with 240 arms show that the radius of gyration scales with the degree of polymerization of the side chains with an exponent of 0.57±0.05. The hydrolysis of the PtBA block of the side chains resulted amphiphilic cylindrical core-shell nanoparticles. In order to obtain a narrow length distribution of the brushes, the backbone, poly(2-hydroxyethyl methacrylate), was synthesized by anionic polymerization in addition to ATRP. The characteristic core-shell cylindrical structure of the brush was directly visualized on mica by scanning force microscopy (SFM). Brushes with 1500 block copolymer side chains and a length distribution of lw/ln=1.04 at a total length ln=179 nm were obtained. By choosing the proper solvent in the dip-coating process on mica, the core and the shell can be visualized independently by SFM.  相似文献   

20.
A simple procedure is employed for the growth of silver nanoparticles (Ag NPs) onto the silicon substrate modified by poly(acrylic acid) (PAA) brushes, via: (1) surface-initiated ATRP of tert-butyl acrylate on Si surface to the preparation of poly(tert-butyl acrylate) brushes, (2) acid hydrolysis of PBA to the formation of PAA, and (3) in situ synthesis of Ag NPs via chemical reduction of AgNO3 in the presence of PAA brushes. The polymer brushes are thoroughly characterized. Moreover, Ag nanoparticles are homogeneously immobilized into the brush layer and have been used to fabricate a sensor platform of surface-enhance Raman scattering for the detection of organic molecules and effectively catalyze the reduction of methylene blue by NaBH4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号