首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 169 毫秒
1.
Synthesis of poly(ethylene glycol)-polydimethylsiloxane amphiphilic block copolymers is discussed herein. Siloxane prepolymer was first prepared via acid-catalyzed ring-opening polymerization of octamethylcyclotetrasiloxane (D4) to form polydimethylsiloxane (PDMS) prepolymers. It was subsequently functionalized with hydroxy functional groups at both terminals. The hydroxy-terminated PDMS can readily react with acid-terminated poly(ethylene glycol) (PEG diacid) to give PEG-PDMS block copolymers without using any solvent. The PEG diacid was prepared from hydroxy-terminated PEG through the ring-opening reaction of succinic anhydride. Their chemical structures and molecular weights were characterized using 1H NMR, FTIR and GPC, and thermal properties were determined by DSC. The PEG-PDMS copolymer was incorporated into chitosan in order that PDMS provided surface modification and PEG provided good water swelling properties to chitosan. Critical surface energy and swelling behavior of the modified chitosan as a function of the copolymer compositions and contents were investigated.  相似文献   

2.
A series of novel silicone-modified polyesters (SPE) were prepared by substituting part of diol with low molecular weight hydroxyl-terminated poly(dimenthylsiloxane) (PDMS). Then, isophorone diisoclanate (IPDI) as hard segments and 1,4-butanediol as chain extender were added to SPE to prepare a silicone-modified polyurethane (SPU). The effects of the type of diol, diacid, and hydroxyl-terminated PDMS, and the amount of hydroxyl-terminated PDMS on the preparation and surface properties of SPU were investigated. It was found that the amount of PDMS incorporated into a polyester chain was relatively higher when 1,6-hexanediol (HDO) and 1,10-decandiol (DDO) were used as diol and the PDMS with lower molecular weight was used as organosilicone compound. Consequently, the SPU coats with HDO as diol, adipic acid (AA) as diacid, and short chain PDMS as silicone segment had the lowest surface-free energy since it had the highest and most homogeneous distribution of silicone segments at its top layer surfaces.  相似文献   

3.
Tunable hydrogel that contained well‐defined poly(vinyl alcohol) (PVA), labile lactate groups, and hydrophilic poly(ethylene glycol) (PEG) segments was prepared through a combination of reversible addition‐fragmentation chain transfer (RAFT) polymerization and esterification reaction. A diol was prepared via the esterification between lactic acid (LA) and PEG. Then the diol was allowed to react with maleic anhydride to produce a diacid. Meanwhile, well‐defined PVA was synthesized by the alcoholysis of poly(vinyl acetate) (PVAc) obtained by RAFT polymerization of vinyl acetate. The hydrogels with tailor‐made structure were generated by crosslinking PVA with LA‐based diacid. The structures and properties of LA‐based intermediates and the hydrogels were characterized with Fourier transform infrared spectroscopy, gel permeation chromatography, differential scanning calorimetry, and thermogravimetric analysis. Both LA‐based diol and diacid were semicrystalline and water‐soluble, their melting temperature and glass transition temperature were 52 and ?51, 54 and ?41°C, respectively. The polydispersity indexes of the precursor of PVA samples were within the range of 1.03–1.10. It was found that the thermal stability of hydrogel was higher than that of LA‐based diacid. Both the swelling and release properties of the hydrogels depend on the feeding ratio of PVA/LEM and the chain length of PVA, which reflected that the structure and properties of the hydrogels were controllable. POLYM. ENG. SCI., 54:1366–1371, 2014. © 2013 Society of Plastics Engineers  相似文献   

4.
BACKGROUND: The aim of this work was to develop polyhydroxyalkanoates (PHAs) for blood contact applications, and to study their self‐assembly behavior in aqueous solution when the PHAs are incorporated with hydrophilic segments. To do this, poly(ester‐urethane) (PU) multiblock copolymers were prepared from hydroxyl‐terminated poly(ethylene glycol) (PEG) and hydroxylated poly[(R)‐3‐hydroxyalkanoate] (PHA‐diol) using 1,6‐hexamethylene diisocyanate as a coupling reagent. The PEG segment functions as a soft, hydrophilic and crystalline portion and the poly[(R)‐3‐hydroxybutyrate] segment behaves as a hard, hydrophobic and crystalline portion. In another series of PU multiblock copolymers, crystalline PEG and completely amorphous poly[((R)‐3‐hydroxybutyrate)‐co‐(4‐hydroxybutyrate)] behaved as hydrophobic and hydrophilic segments, respectively. RESULTS: The formation of a PU series of block copolymers was confirmed by NMR, gel permeation chromatography and infrared analyses. The thermal properties showed enhanced thermal stability with semi‐crystalline morphology via incorporation of PEG. Interestingly, the changes of the hydrophilic/hydrophobic ratio led to different formations in oil‐in‐water emulsion and surface patterning behavior when cast into films. Blood compatibility was also increased with increasing PEG content compared with PHA‐only polymers. CONCLUSION: For the first time, PHA‐based PU block copolymers have been investigated in terms of their blood compatibility and aggregation behavior in aqueous solution. Novel amphiphilic materials with good biocompatibility for possible blood contact applications with hydrogel properties were obtained. Copyright © 2008 Society of Chemical Industry  相似文献   

5.
A series of hexafluoroisopropylidene bisphenol poly(arylene ether sulfone) (BAF PAES) segmented block copolymers with varying fractions of polydimethylsiloxane (PDMS) were synthesized by a condensation reaction of hydroxyl-terminated BAF PAES and dimethylamino endcapped PDMS. The segmented block copolymers have high thermal stability. The BAF PAES homopolymer exhibits a tensile modulus of 1700 MPa and an elongation at break of 16%. Copolymerizing BAF PAES with increasing molecular weight amounts of PDMS results in tensile properties ranging from plastic to elastomeric where the elongation is 417% for a segmented block copolymer with 64 wt% PDMS incorporated. The morphological properties of these segmented block copolymers were characterized by atomic force microscopy (AFM), small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM). AFM and TEM images show the segmented block copolymers were microphase separated, and comparison with bisphenol A (BA) PAES-b-PDMS segmented block copolymers revealed complex differences between the morphological behavior of the two systems. SAXS data of the segmented block copolymers supports AFM and TEM images, indicating microphase separation but little long-range order.  相似文献   

6.
α,ω-Amine terminated organofunctional polydimethylsiloxane (PDMS) was condensed with 4,4′-azobis-4-cyanopentanoyl chloride (ACPC) to prepare macroazoinitiators containing siloxane units. Interfacial polycondensation reaction at room temperature was applied: ACPC was slightly dissolved in carbon tetrachloride and it was poured on aqueous NaOH solution of PDMS. Block copolymers containing PDMS as a block segment combined with polystyrene (PS) have been derived by the polymerization of styrene monomer initiated by these macroazoinitiators. PS-b-PDMS block copolymers were characterized by using nuclear magnetic resonance and infrared spectroscopy. Thermal and mechanical properties of the block copolymers were studied by using thermogravimetric analysis, differential scanning calorimetry, and a Tensilon stress-strain instrument. The morphology of block copolymers was investigated by scanning electron microscopy. PDMS-g-polybutadiene (PBd) graft copolymers were also prepared by reaction of PBd with the above macroazo-initiator. Increase in the amount of macroazoinitiator in the mixture of PBd (52% w/w) leads to the formation of crosslinked graft copolymers. Molecular weights of soluble graft copolymer samples were between 450 and 600 K with a polydispersity of 2.0–2.3. © 1996 John Wiley & Sons, Inc.  相似文献   

7.
N.S. Murthy  J. Kohn 《Polymer》2010,51(17):3978-63
Hydration- and temperature-induced microphase separations were investigated by simultaneous small- and wide-angle X-ray scattering (SAXS and WAXS) and differential scanning calorimetry (DSC) in a family of copolymers in which hydrophilic poly(ethylene glycol) (PEG) blocks are inserted randomly into a hydrophobic polymer made of either desaminotyrosyl-tyrosine ethyl ester (DTE) or iodinated I2DTE segments. Iodination of the tyrosine rings in I2DTE increased the X-ray contrast between the hydrophobic and hydrophilic segments in addition to facilitating the study of the effect of iodination on microphase separation. The formation of phase-separated, hydrated PEG domains is of considerable significance as it profoundly affects the polymer properties. The copolymers of DTE (or I2DTE) and PEG are a useful model system, and the findings presented here may be applicable to other PEG-containing random copolymers. In copolymers of PEG and DTE and I2DTE, the presence of PEG depressed the glass transition temperature (Tg) of the copolymer relative to the homopolymer, poly(DTE carbonate), and the DTE/I2DTE segments hindered the crystallization of the PEG segments. In the dry state, at large PEG fractions (>70 vol%), the PEG domains self-assembled into an ordered structure with 14-18 nm distance between the domains. These domains gave rise to a SAXS peak at all temperatures in the iodinated polymers, but only above the Tg in non-iodinated polymers, due to the unexpected contrast-match between the crystalline PEG domains and the glassy DTE segments. Irrespective of whether PEG was crystalline or not, immersion of these copolymers in water resulted in the formation of hydrated PEG domains that were 10-20 nm apart. Since both water and the polymer chains must be mobile for the phase separation to occur, the PEG domains disappeared when the water froze, and reappeared as the ice began to melt. This transformation was reversible, and showed hysteresis as did the melting of ice and freezing of the water incorporated into the polymer. PEG-water complexes and PEG-water eutectics were observed in WAXS and DSC scans, respectively.  相似文献   

8.
Poly(A)‐block‐poly(B), poly(A)‐block‐poly(B)‐block‐poly(A) and B(A)2 block copolymers were prepared through coordinated anionic ring‐opening polymerization of ε‐caprolactone (CL) and lactic acid (LA) using hydroxy‐terminated polydimethylsiloxane (PDMS) as initiator. A wide range of well‐defined combinations of PDMS‐block‐PCL and PDMS‐block‐PLA diblock copolymers, PCL‐block‐PDMS‐block‐PCL and PLA‐block‐PDMS‐block‐PLA triblock copolymers and star‐PDMS(PCL)2 copolymers were thus obtained. The number‐average molar masses and the structure of the synthesized block copolymers were identified using various analytical techniques. The thermal properties of these copolymers were established using differential scanning calorimetry. Considering PDMS‐block‐PCL copolymers, the results demonstrate the complex effect of polymer architecture and PCL block length on the ability of the PDMS block to crystallize or not. In the case of diblock copolymers, crystallization of PCL blocks originated from stacking of adjacent chains inducing the extension of the PDMS block that can easily crystallize. In the case of star copolymers, the same tendency as in triblock copolymers is observed, showing a limited crystallization of PDMS when the length of the PCL block increases. In the case of PDMS‐block‐PLA copolymers, melting and crystallization transitions of the PLA block are never observed. Considering the diblock copolymers, PDMS sequences have the ability to crystallize. © 2019 Society of Chemical Industry  相似文献   

9.
Polyester polyol macromers were prepared by using diacid‐diol condensation reaction using succinic acid as the acid component and polyethylene glycol 200 (PEG 200) as the diol component. Replacing PEG 200 with increasing amounts of butanediol resulted in macromers, which upon acrylation of end hydroxy groups and polymerization resulted in polymers with graded hydrophobicity depending on the amount of butanediol present in the polymer. These polymers showed expected trends in water equilibrium swells, equilibrium water contact angles, and in vitro degradation times depending on the amount of modification with butanediol. These polymers were used to microencapsulate sulfamethoxazole as a model drug and the in vitro delivery of the drug also followed the expected trend depending on the polymer hydrophobicity. Thus, it was shown that it is possible to prepare polyesters of graded properties by judicious selection of diacids and diols. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4058–4065, 2006  相似文献   

10.
Graft and crosslinked polydimethylsiloxane (PDMS)-chitosan copolymers were prepared through the reaction between mono and difunctional glycidoxypropyl-terminated PDMSs and chitosan. The transformation of amino groups of chitosan through the reaction with epoxy groups was confirmed by FT-IR and 13C cross-polarization (CP) magic-angle spinning (MAS)-NMR analysis. Chitosan-based materials modified with about 40% and 60% hydrophobic polydimethylsiloxane were obtained, respectively. As proved by wide angle X-ray analysis, the crystallinity of chitosan was strongly decreased through the incorporation of PDMS sequences. However, both graft and crosslinked copolymers still present a partial crystalline structure. Their X-ray patterns are not only different as compared to chitosan but also as compared to each other. For the graft copolymer, three diffraction peaks were observed at 2θ = 8.4°, 11.2° and 21.2°, indicating the formation of a new partially crystalline phase and the modification of the interplanar distances for the phases similar to chitosan. The crosslinked copolymer is even less crystalline, the peak around 2θ = 20° being strongly decreased. Different thermal behaviour of siloxane modified chitosan was registered for graft and crosslinked copolymers; the graft sample is less stable than chitosan, while the crosslinked copolymer showed an intermediate stability between chitosan and polydimethylsiloxane precursors.  相似文献   

11.
By using a polydimethylsiloxane (PDMS) macro-chain transfer agent with trithiocarbonate groups at both ends, fluorosilicone block copolymers containing polyhedral oligomeric silsesquioxane (POSS) were synthesized via reversible addition–fragmentation chain transfer (RAFT) polymerization. Acryloisobutyl POSS (APOSS) and 2,2,3,4,4,4-hexafluorobutyl acrylate (HFBA) were sequentially introduced into the copolymers. The obtained triblock copolymers PDMS-b-(PAPOSS)2 exhibited a low polydispersity index (PDI) of less than 1.42 in the first 6 h of polymerization, but the PDI value became broader later because of the steric hindrance of the POSS macromer. The POSS-containing fluorosilicone pentablock copolymers with a PDI of about 2.0, which were prepared by the further RAFT polymerization of HFBA, showed clear microphase separation. The average roughness values of the copolymer films were enhanced by introducing POSS, and a certain POSS content led to a significant decrease of the receding contact angle. Measurements of water contact angles and ice shear strengths demonstrated that the non-wetting properties of the copolymer films were improved by the incorporation of both POSS and fluorine blocks. The block copolymers combine the advantages of POSS, PDMS and fluoropolymers, and can be potentially applied as non-wetting coating materials for anti-icing or anti-frosting.  相似文献   

12.
We report on the self-assembly, in water and in bulk, of amphiphilic liquid crystal block copolymers consisting of a cholesterol-based smectic LC polymer block (PAChol) and poly(ethylene glycol) (PEG) block. Two series of block copolymers, PEG45-b-PAChol and PEG114-b-PAChol (45 and 114 are the degree of polymerization of PEG blocks) with different hydrophilic/hydrophobic weight ratios were synthesized and characterized in detail. Depending on the diblock composition, smectic polymer vesicles and/or nanofibers were formed by adding water into a dilute solution of copolymers in dioxane. If THF is used instead of dioxane as solvent, solid spherical aggregates were obtained upon water addition for PEG45-b-PAChol series, while macroscopic precipitation occurred for PEG114-b-PAChol series. The mesomorphic and microphase segregation structures of the block copolymers in bulk were studied by X-ray scattering, DSC and POM. The interdigital smectic A (SmAd) phase with a lamellar period of 4.25 nm was detected in all block copolymers. For PEG114-b-PAChol5 (PEG/PAChol weight ratio = 66/34) and PEG114-b-PAChol12 (45/55), lamellar type of microphase segregation was observed.  相似文献   

13.
Five series of block copolymers based on natural rubber and polyurethane were prepared from hydroxyl terminated liquid natural rubber (HTNR) and polyurethane (PU) formed by the reaction of diphenyl methane—4,4′—diisocyanate (MDI) with a chain extender diol, viz., ethylene glycol (EG)/propylene glycol (PG)/1,4‐butane diol (1,4‐BDO)/1,3‐butane diol (1,3‐BDO)/bisphenol A (BPA), by solution polymerization. Structural characterization of the block copolymers was done by infrared (IR) analysis. Thermal studies and kinetic analysis on thermal degradation of the block copolymers were undertaken with the view of characterizing them. Energy of activation and entropy change for the degradation were determined and a probable mechanism for the solid state degradation was suggested which corresponds to a three dimensional diffusion mechanism. DSC analysis has been used for the study of microphase separation in the block copolymers. Thermal transition of the hard segment significantly varies with the extender diol which highlights the effect of extender diol structure on the chain stiffening mechanism. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Thermoplastic polyolefin (TPO) films with permanent, silicone‐rich, low‐friction, low‐abrasion surfaces were obtained by melt blending of high‐density polyethylene (HDPE) and polypropylene (PP) with polydimethylsiloxane (PDMS)‐containing block copolymers. Two different block copolymers, a siloxane–urea segmented copolymer and a polycaprolactone‐b‐PDMS triblock copolymer were used as modifiers at levels between 0.1 and 5.0% by weight. Blends were prepared in a twin‐screw extruder. Modified films displayed surfaces with very low friction coefficients and high abrasion resistance, which depended on the type and the level of additive incorporated into the system. Bulk properties of these modified systems, such as crystallization and melting behavior or tensile properties, were not affected. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 535–540, 2002; DOI 10.1002/app.10279  相似文献   

15.
Summary Three series of new optically active poly(amide-imide-ether-urethane) (PAIEU) copolymers with different soft segments including polyethylene glycol (PEG), polypropylene glycol (PPG) or polytetramethylene glycol (PTMG) of molecular weight (MW) of 1000 were successfully synthesized. These copolymers were prepared via direct polycondensation reaction of an aromatic diacid based on L-leucine (1), 4,4’-methylene-bis-(4-phenylisocyanate) (MDI) (2) and different polyether polyols. FTIR spectroscopy shows the different absorption bands of NH, urethane and imide-I, II groups that suggests the different intermolecular interactions due to hydrogen bonding in these PAIEUs. On the other hand, DSC analysis reveals that the glass transition temperature for hard segments (Tgh) of PAIEUs based on polyethers with higher ratio of O/CH2 is higher than that of polyethers with lower ratio of O/CH2 and it decreases with the soft segment length in PAIEUs consisting of the same type of PEG soft segments.  相似文献   

16.
Ring‐opening polymerization of L ‐ or D ‐lactide was realized at 140 °C for a period of 7 days in the presence of dihydroxyl poly(ethylene glycol) (PEG), with M?n = 4000 g mol?1, using zinc lactate as initiator. The resulting poly(L ‐lactide)–PEG–poly(L ‐lactide) and poly(D ‐lactide)–PEG–poly(D ‐lactide) triblock copolymers are water soluble with polylactide (PLA) block length ranging from 11 to 17 units. Both the tube inverting method and rheological measurements were used to evaluate the gelation properties of aqueous solutions containing single copolymers or L /D copolymer pairs. Stereocomplexation between poly(L ‐lactide) and poly(D ‐lactide) blocks is observed for mixed solutions. Hydrogel formation is detected in the case of relatively long PLA blocks (DP PLA = 17), but not for copolymers with shorter PLA blocks (DP PLA = 11–13) due to partial racemization of L ‐lactyl units. Racemization is largely reduced when the reaction time is shortened to 1 day. Under these conditions, DP PLA of 8 is sufficient for the stereocomplexation of PLA–PEG block copolymers, and DP PLA above 10 leads to the formation of hydrogels of PLA–PEG block copolymers. On the other hand, racemization appears as a general phenomenon in the (co)polymerization of L ‐lactide with Zn(Lac)2 as initiator, although it is negligible or undetectable in the case of high molar mass polymers. Therefore, racemization is the limiting factor for the stereocomplexation‐induced gelation of water‐soluble PLA–PEG block copolymers where the PLA block length generally ranges from 10 to 30. Reaction conditions including initiator, time and temperature should be strictly controlled to minimize racemization. Copyright © 2010 Society of Chemical Industry  相似文献   

17.
We report on the synthesis and self‐assembly in water of well‐defined amphiphilic star‐block copolymers with a linear crystalline polyethylene (PE) segment and two or three poly(ethylene glycol) (PEG) segments as the building blocks. Initially, alkynyl‐terminated PE (PE‐?) is synthesized via esterification of pentynoic acid with hydroxyl‐terminated PE, which is prepared using chain shuttling ethylene polymerization with 2,6‐bis[1‐(2,6‐dimethylphenyl) imino ethyl] pyridine iron (II) dichloride/methylaluminoxane/diethyl zinc and subsequent in situ oxidation with oxygen. Then diazido‐ and triazido‐terminated PE (PE‐(N3)2 and PE‐(N3)3) are obtained by the click reactions between PE‐? and coupling agents containing triazido or tetraazido, respectively. Finally, the three‐arm and four‐arm star‐block copolymers, PE‐b‐(PEG)2 and PE‐b‐(PEG)3, are prepared by click reactions between PE‐(N3)2 or PE‐(N3)3 and alkynyl‐terminated PEG. The self‐assembly of the resultant amphiphilic star‐block copolymers in water was investigated by dynamic light scattering, transmission electron microscopy, and atomic force microscopy. It is found that, in water, a solvent selectively good for PEG blocks; these star‐block copolymer chains could self‐assemble to form platelet‐like micelles with insoluble PE blocks as crystalline core and soluble PEG blocks as shell. The confined crystallization of PE blocks in self‐assembled structure formed in aqueous solution is investigated by differential scanning calorimetry. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
Biodegradable, amphiphilic, linear (diblock and triblock) and star‐shaped (three‐armed and four‐armed) poly[(ethylene glycol)‐block‐(ε‐caprolactone)] copolymers (PEG–PCL copolymers) were synthesized by ring‐opening polymerization of ε‐caprolactone (CL) with stannous octoate as a catalyst, in the presence of monomethoxypoly(ethylene glycol) (MPEG), poly(ethylene glycol) (PEG), three‐armed poly(ethylene glycol) (3‐arm PEG) or four‐armed poly(ethylene glycol) (4‐arm PEG) as an initiator, respectively. The monomer‐to‐initiator ratio was varied to obtain copolymers with various PEG weight fractions in a range 66–86%. The molecular structure and crystallinity of the copolymers, and their aggregation behavior in the aqueous phase, were investigated by employing 1H‐NMR spectroscopy, gel permeation chromatography and differential scanning calorimetry, as well as utilizing the observational data of gel–sol transitions and aggregates in aqueous solutions. The aggregates of the PEG–PCL block copolymers were prepared by directly dissolving them in water or by employing precipitation/solvent evaporation technique. The enthalpy of fusion (ΔHm), enthalpy of crystallization (ΔHcrys) and degrees of crystallinity (χc) of PEG blocks in copolymers and the copolymer aggregates in aqueous solutions were influenced by their PEG weight fractions and molecular architecture. The gel–sol transition properties of the PEG–PCL block copolymers were related to their concentrations, composition and molecular architecture. Copyright © 2006 Society of Chemical Industry  相似文献   

19.
A series of block copolymers of poly(ethylene glycol) (PEG) with methyl methacrylate (MMA) were prepared using a redox system consisting of ceric ion and PEG of various molecular weights in aqueous medium. The block copolymerization experiments were carried out under such conditions in which there was no homopolymerization of MMA by Ce4+ alone. The intermediacy of the PEG macroradical in the redox process was substantiated by ESR spectroscopy and a polymerization proceeding through ‘blocking from’ mechanism was postulated. The formation of the block copolymers was confirmed by chemical test and fractional precipitation as well as by FT-IR and FT-NMR (1H and 13C-(1H)) spectroscopy. The triblock nature of the block copolymers was ascertained through the cleavage of the ether linkage of the PEG segment. Simultaneous TG/DTA studies of the block copolymers revealed multiple stage decomposition patterns and their DSC curves exhibited two glass transition temperatures. GPC investigation of the block copolymers revealed unimodal molecular weight distribution with Mn values showing a smooth increase with ascending molecular weights of PEG. SEM studies indicated a fine dispersion of PEG in the continuous PMMA matrix.  相似文献   

20.
Novel, randomly coupled, soluble, segmented polyimide–polydimethylsiloxane (PI–PDMS) copolymers were prepared from aminoalkyl‐terminated polydimethylsiloxane (At–PDMS), 4,4′‐oxydianiline diamine, pyromellitic dianhydride, and 4,4′‐diphenylmethane diisocyanate (MDI). When At–PDMS was introduced into the polyimide chain, the polyimide copolymers exhibited lower dielectric constants and better moisture resistance and mechanical properties. The reductions in the dielectric constant of the PI–PDMS copolymers could be attributed to the incorporation of polydimethylsiloxane (PDMS) into the polyimide chain and the nanopores in the film generated by carbon dioxide evolvement during the reaction. The lowest dielectric constant was 2.58 with 25 wt % PDMS and 5 wt % MDI. In addition, the water contact angles of the resultant copolymers increased from 51 to 109° when the contents of PDMS increased from 0 to 25 wt %. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号