首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new monomer (2-N,N-dimethylamino-4,6-Bis (2-thienyl)–pyrimidine) was synthesized and its homopolymer was successfully prepared by using Ferric trichloride (FeCl3) as an oxidant. The structure of the polymer and monomer was fully characterized by 1H–NMR, FTIR, UV-vis, Fluorescent spectroscopy and X-ray diffraction pattern. The polymer gives rise to a band at λ max = 391 nm. The polymer showed the PL spectrum, gave a peak at 507 nm.We have observed that the polymer was sensitive to inorganic acids and the acidochromism behavior was investigated applying organic acid such as CF3COOH. The corresponding UV-Vis peaks were observed at 464 nm and 357 nm respectively. X-ray diffraction data shows that polymer has a certain crystallinity. The polymer exhibited an [η] value of 0.26 dLg−1 at 25 °C in H2SO4 (w = 98%).  相似文献   

2.
The degradation behavior of P(TMC-co-CL) in different compositions was investigated via subcutaneous implantation in vivo. To clarify the role of enzymes in the degradation behavior of the copolymers, hydrolytic and enzymatic degradation were also performed. The mass loss, changes in molecular weight and polydispersity, as well as the variation in composition were monitored with degradation. The changes in thermal and mechanical properties of the specimens were also studied. The results showed that the preferred cleavage of ester bonds resulted in faster degradation in both the hydrolytic and enzymatic cases. Furthermore, the P(TMC-co-CL) had a higher degradation rate in the presence of lipase because it cleaves ester bonds as well as the role of surfactants in the diffusion of the degradation products into water. In vivo, the degradation behavior of the P(TMC-co-CL) depended on their composition—copolymers with a higher TMC content degraded primarily via surface erosion. Bulk degradation was observed for those with a higher CL content. After degradation the mechanical properties and thermal stabilities of the copolymers deteriorated, but the Tm and crystallinity increased via preferred degradation of the amorphous regions. The P(TMC-co-CL) had a tunable degradation rate and remains a promising candidate for clinical subcutaneous implants especially through form-stabilization work.  相似文献   

3.
Summary The synthesis and cationic polymerization of (2S, 3S)-(+)-2-chloro-3-methylpentyl 4-(2-vinyloxyethyloxy)biphenyl-4-carboxylate (15–2) and (2S, 3S)-(+)-2-chloro-3-methylpentyl 4-(3-vinyloxypropyloxy)biphenyl-4-carboxylate (15–3) are described. The mesomorphic behavior of the resulting polymers is discussed as a function of the molecular weight and spacer length. Based on the second and subsequent heating and cooling scans, poly(15–2)s exhibit an enantiotropic SX (unidentified smectic) phase. Poly(15–2) with DP=4 is only crystalline. Poly(15–3)s show an enantiotropic cholesteric phase and an inverse monotropic SX phase.  相似文献   

4.
A novel diamine 4,4′-(3-(tert-butyl)-4-aminophenoxy)diphenyl ether (4) was synthesized from 2-tert-butylaniline and 4,4′-oxydiphenol through iodination, acetyl protection, coupling reaction and deacetylation protection. Then some polyimides (PIs) were obtained by one-pot polycondensation of diamne 4 with several commercial aromatic dianhydrides respectively. They all exhibit enhanced solubility in organic solvents (such as NMP, DMF, THF and CHCl3 etc.) at room temperature. Their number-average molecular weights are in the range of (2.1–3.7)?×?104 g/mol with PDI from 2.25 to 2.74 by GPC. They can form transparent, tough and flexible films by solution-casting. The light transparency of them is higher than 90% in the visible light range from 400 nm to 760 nm and the cut-off wavelengths of UV–vis absorption are below 370 nm. They also display the outstanding thermal stability with the 5% weight loss temperature from 525 °C to 529 °C in nitrogen atmosphere. The glass transition temperatures (T g s) are higher than 264 °C by DSC. XRD results demonstrate that these PIs are amorphous polymers with the lower water absorption (<0.66%). In summary, the incorporation of tert-butyl groups and multiple phenoxy units into the rigid PI backbones can endow them excellent solubility and transparency with relatively high T g s.  相似文献   

5.
Effect of BiFeO3 (BFO) content on the microstructure and electrical properties of BaTi0.9Zr0.1O3 (BTZ) ceramics prepared by the solid-state reaction technique was investigated. X-ray diffraction analyses show that BFO diffused into the lattice of BTZ to form a solid solution with perovskite structure. The relative density of the BTZ ceramics is increased by the introduction of BFO. The dielectric study reveals that the dielectric constant and the average dielectric loss of the solid solution decreased simultaneously with an increase in BFO content. The materials undergo a diffuse type ferroelectric phase transition. The diffusivity increases with increase in BFO contents in the studied composition range. On the other hand, the piezoelectric coefficient and electromechanical coupling coefficient decrease simultaneously with increasing the BFO content, whereas the mechanical quality factor increases gradually. The structure–property relationship and the mechanism associated with the change of the electrical properties are discussed intensively.  相似文献   

6.
Subsolidus pyrochlores with the proposed formula, Bi3+(5/2)xMg2−xNb3−(3/2)xO14−x (0.14≤x≤0.22) were successfully synthesised at the firing temperature of 1025 °C using conventional solid-state reaction. The excess Bi3+ charge was offset by removal of relative proportion of Mg2+ and Nb5+ together with creation of oxygen non-stoichiometry in order to preserve electroneutrality of the system. These samples were crystallised in cubic structure with space group of Fd3m, No. 227 and their refined lattice parameters were in the range of 10.5706 (3)–10.5797 (7) Å. The surface morphologies of the samples as confirmed by scanning electron microscopy analysis were of irregular shaped grains while their crystallite sizes of ~30–85 nm were calculated using the Scherrer equation and the Williamson–Hall method. No thermal event was discernable indicating these pyrochlores were thermally stable within a studied temperature range of ~30–1000 °C. The recorded dielectric constants of Bi3+(5/2)xMg2−xNb3−(3/2)xO14−x (0.14≤x≤0.22) subsolidus pyrochlores were generally above ~160 and their dielectric losses were in the order of 10−4–10−3 at the frequency of 1 MHz and temperature of ~30 °C. Meanwhile, these ceramic samples also exhibited negative temperature coefficient of relative permittivity between −528 and −742 ppm/°C in the temperature range of ~30–300 °C.  相似文献   

7.
An investigation of the potential interest of α-alumina-hematite foams, as opposed to powders, as starting materials for the synthesis of carbon nanotubes (CNTs) by catalytic chemical vapor deposition method was performed. The oxide powders and foams as well as the corresponding CNT-Fe-Al2O3 composite powders and foams are studied by X-ray diffraction, specific surface area measurements, electron microscopy, Raman spectroscopy and Mössbauer spectroscopy. The latter technique revealed that four components (corresponding to α-Fe, Fe3C, γ-Fe-C and Fe3+) were present in the Mössbauer spectra of the composite powders, and that an additional sextet, possibly due to an Fe1−yCy alloy, is also present in the Mössbauer spectra of the composite foams. Contrary to some expectations, using foams do not lead to an easier reduction and thus to the formation of more α-Fe, Fe3C and/or γ-Fe-C potentially active particles for the formation of CNTs, and hence to no gain in the quantity of CNTs. However, using foams as starting materials strongly favors the selectivity of the method towards SWCNTs (60% SWCNTs and 40% DWCNTs) compared to what is obtained using powders (5% SWCNTs, 65% DWCNTs and 30% MWCNTs).  相似文献   

8.
Kaewkan Wasanasuk 《Polymer》2011,52(26):6097-6109
Crystal structure of poly(l-lactic acid) (PLLA) α′ form (or the newly-termed “δ” form) has been analyzed on the basis of the X-ray diffraction data. The oriented δ form was obtained by stretching and annealing the melt-quenched sample at ca. 100 °C. The unit cell parameters were a = 10.80 Å, b = 6.20 Å, c (fiber axis) = 28.80 Å and α = β = γ = 90°. As seen from the lack of even-numbered 00l reflections (002, 004, ..) except the 0010 reflection, the chain conformation of the δ form was found to be more remarkably disordered than that of the regular α form. As already reported, the α form takes the (10/3) helix with approximately 21 screw symmetry although, more strictly speaking, this screw symmetry is not actually existent. The δ form does not possess any symmetry along the chain axis although the local torsional angles are not very much different from each other. As for the chain packing structure, the two different possibilities were assumed in the structural refinement procedure: (i) the corner and center chains direct upward and downward along the chain axis, respectively, just like the case of regular α form (alternate packing mode) and (ii) the upward and downward chains are located at the same lattice site at 50% probability (statistically-disordered packing mode). The structure analysis using the Bragg reflections suggested the preferability of the model (i). The diffuse and streaky lines were observed along the layer lines, originating from the relative-height disorder between the neighboring chains in the δ form. The X-ray diffuse scatterings coming from the various types of the disordered structure have been simulated, among which the disordered multi-domain structure model was found to be the most plausible model, where the domains constructed by the alternate arrangement of upward and downward chains are gathered together with the mismatch in the relative height between the neighboring domains. In this way the disorder-to-order phase transition from the δ to α form was found to occur through the conformational ordering of the chains accompanied with the chain packing regularization as well as the matching of the neighboring domain height to give a large single domain of the α form.  相似文献   

9.
Lead-free ferroelectric ceramics (1−x)Bi0.5Na0.5TiO3xKNbO3 (BNT–xKN) with x=0.00, 0.04, 0.06 and 0.08 were synthesized by the conventional solid state reaction method. The effects of the KNbO3 addition on the dielectric behavior, ferroelectric properties, as well as electrocaloric effect of the ferroelectric ceramic BNT–xKN were investigated. The results show that the depolarization temperature decreases with the increment of KN content. A high ECE of 1.73 °C is achieved at 76 °C in BNT–0.06KN. The relation between electrocaloric effect and depolarization transition was discussed. This investigation indicates that the depolarization transition below Curie transition in BNT-based ceramics is a promising approach in ECE technique.  相似文献   

10.
Residual NiO phase is generally detected in 0.9(KNbO3)–0.1(BaNi1/2Nb1/2O3-δ) (KBNNO) synthesized using NiO as a nickel precursor by solid-state reaction. In this work, NiO phase is found to exist in the form of the residual NiO particles with a size of 100-200 nm using energy dispersive X-ray elemental mapping. These NiO residual particles are eliminated by using nickel acetate as a nickel precursor and a 100% perovskite phase KBNNO is successfully synthesized at as low as 600°C temperature. Furthermore, using the two-step sintering technique, 100% relative density is achieved in this material. The nickel acetate–based KBNNO shows a robust ferromagnetism with the saturation magnetization of 11.42 memu/g and the remanent magnetization of 3.89 memu/g which is 38 times higher than that of previously reported value in NiO-based KBNNO. Thus, a highly pure and fully dense KBNNO ceramic with superior magnetic properties is obtained using nickel acetate and by the two-step sintering method. This is a key step forward in the processing of KBNNO and is likely to have a significant impact on other physical properties of this newly invented and promising photovoltaic perovskite material.  相似文献   

11.
(1 − x)ZnAl2O4xTiO2 (x = 0.21) ceramics were synthesized at 1500 °C for 3 h using the solid-state reaction at a heating rate from 1 to 7 °C/min. The effects of heating rate on the microstructure, phase composition and oxidation state of titanium in the ceramics were investigated. The XRD results show that this system is composed of two phases, i.e. ZnAl2O4 spinel and rutile. The “black core” phenomenon resulting from reduction of Ti4+ ion valence appears after the ceramics are sintered at the speed of 1 and 3 °C/min. As the heating rate increases, the density and quality factor (Q·f) increase initially and reach the maximum value when the heating rate is 5 °C/min, and then reduce quickly to the minimum, while the dielectric constant (?r) and temperature coefficient of resonator frequency (τf) nearly do not change. The optimal microwave dielectric properties can be achieved in (1 − x)ZnAl2O4xTiO2 (x = 0.21) ceramics sintered at a heating rate of 5 °C/min with an ?r value of 11.6, a Q·f value of 74,000 GHz (at about 6.5 GHz), and a τf value of −0.4 ppm/°C.  相似文献   

12.
SmxSr1 − xCoO3 − δ (SSCx) materials are promising cathodes for IT-SOFCs. The influence of Sm content in SSCx (0.2 ≤ x ≤ 0.8) oxides on their oxygen nonstoichiometry, oxygen desorption, thermal expansion behavior, electrical conductivity and electrochemical activity for oxygen reduction is systematically studied by iodometric titration, oxygen-temperature programmed desorption (O2-TPD), dilatometer, four-probe DC conductivity, electrochemical impedance spectroscopy (EIS) and three-electrode polarization test, respectively. Iodometric titration experiments demonstrate that the electrical charge neutrality compensation in SSCx proceeds preferably through the oxidation of cobalt ion for high Sm3+ contents (x ≥ 0.6). However, it proceeds mainly through the creation of oxygen vacancies at x ≤ 0.5. O2-TPD shows SSC5 possesses the highest oxygen desorption ability among the range of SSCx materials tested. The thermal expansion coefficients (TECs) are high between the transition temperature and 900 °C, showing values typically larger than 20 × 10−6 K−1. All dense materials show high electrical conductivity with a maximum value of ∼1885 S cm−1 for SSC6 in air, while SSC5 has the highest electrical conductivity in nitrogen. EIS analysis of porous electrodes demonstrates that SSC5 has the lowest area specific resistance (ASR) value (0.42 Ω cm2) at 600 °C. Cathodic overpotential testing demonstrates that SSC5 also has the largest exchange current density of 60 mA cm−2 at 600 °C in air.  相似文献   

13.
Bis[N,N′-(alkylamideethyl)ethyl] triethylenediamine surfactants are quaternary ammonium salt Gemini surfactants with amide, which are synthesized from fatty acid (dodecanoic, hexadecanoic, tetradecanoic and octadecanoic) methyl esters, triethylene tetramine and ethyl bromide. The chemical structures of the prepared compounds were characterized by elemental analysis, FTIR and 1H-NMR spectra, melting point and Krafft point. Several properties of the synthesized surfactants were studied including surface tension, critical micelle concentration, interfacial tension, emulsification power, salt effect, corrosion inhibition efficiency and biological activity. The results show that the surface activity, critical micelle concentration and interfacial activity are correlated to their chemical structures. The emulsification power measurements of these surfactants show their low emulsifying tendency towards Tazhong’s crude oil from Tarim Oilfield. The synthesized surfactants also exhibit high biocidal activity towards Gram-positive and Gram-negative bacteria and fungi. This activity increases with the increase of alkyl chain length. The corrosion measurement of these surfactants in acidic media with a weight loss technique show good protection of mild steel alloys against acidic environments. These properties suggest that the synthesized compounds have potential for application in the oilfield area.  相似文献   

14.
Bulk Cu0.5Tl0.5Ba2(Ca2−xYx)Cu3O10−δ superconductor ceramic samples were synthesized by the conventional solid-state method and characterized by X-ray diffraction, dc-resistivity, ac-susceptibility and Fourier Transform Infrared spectroscopy. The main purpose of this study was to investigate the role of charge carriers and the effect of Y substitution at Ca sites in between the CuO2 planes on superconductivity. The superconducting properties are suppressed by Y substitution at Ca sites in between the CuO2 planes of Cu0.5Tl0.5Ba2(Ca2−xYx)Cu3O10−δ samples. It is most likely that Y3+ may create correlated domains in between the CuO2 planes and localizes the carriers, which lowers the diamagnetic screening and suppresses the superconductivity. Therefore, cationic substitution reduces the three dimensional (3D) mobility of carriers, resulting in the reduction of the Fermi vector and velocity of the carriers, which in turn suppresses the superconducting properties of the material.  相似文献   

15.
Six novel photoluminescent Ln–Cu(I) heterobimetallic 3D coordination polymers, [LnCu (pyip2 )2(H2O)]n (16) (where Ln is Pr, Nd, Sm, Eu, Gd, Ho, respectively, and H2pyip = 5-(4-pyridyl) isophthalic acid) have been synthesized in a concise and reproducible manner under hydrothermal conditions. All of these substances were fully characterized by appropriate spectroscopic methods and elemental analysis. Structural determinations revealed that 16 are isomorphic and display 3D frameworks. Luminescent properties of the obtained compounds have been studied in detail revealing light emissions of warm white, cool white and light blue for 3, 4 and 5, respectively. The effectiveness of association of a rare earth with a transition metal in producing valuable luminescent materials for practical applications is demonstrated.  相似文献   

16.
This study reports the successful preparation of single-phase perovskite (Ba0.5Sr0.5)0.8La0.2Fe1−xMnxO3−δ (x = 0-0.2) by the citrate-EDTA complexing method. The crystal structure, thermal gravity analysis, coefficient of thermal expansion, electrical conductivity, and electrochemical performance of (Ba0.5Sr0.5)0.8La0.2Fe1−xMnxO3−δ were investigated to determine its suitability as a cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The lattice parameter a of (Ba0.5Sr0.5)0.8La0.2Fe1−xMnxO3−δ decreases as the amount of Mn doping increases. The coefficients of thermal expansion of the samples are in the range of 21.6-25.9 × 10−6 K−1 and show an abnormal expansion at around 400 °C associated with the loss of lattice oxygen. The electrical conductivity of the (Ba0.5Sr0.5)0.8La0.2Fe1−xMnxO3−δ samples decreases as the amount of Mn-doping increases. The electrical conductivity of the samples reaches a maximum value at around 400 °C and then decreases as the temperature increases. The charge transfer resistance, diffusion resistance and total resistance of a (Ba0.5Sr0.5)0.8La0.2Fe0.8Mn0.15O3-δ-Ce0.8Sm0.2O1.9 composite cathode electrode at 800 °C are 0.11 Ω cm2, 0.24 Ω cm2 and 0.35 Ω cm2, respectively.  相似文献   

17.
Two new polymeric triorganotin(IV) complexes R3Sn{O2CC6H4[N=C(H)}{C(CH3)CH(CH3)-3-OH]-p} n ([Me3Sn(LH)] n : 1) and ([Ph3Sn(LH)] n : 2) containing a 4-[(2Z)-(3-hydroxy-1-methyl-2-butenylidene)amino]benzoate (LH) framework were prepared. Both compounds have been characterized by 1H, 13C, 119Sn NMR, IR and 119Sn Mössbauer spectroscopic techniques in combination with elemental analyses. The crystal structures of complexes 1 and 2 reveal that they exist as polymeric zig-zag chains in which the LH-bridged Sn-atoms adopt a trans-R3SnO2 trigonal bipyramidal configuration with R groups in the equatorial positions and the axial sites occupied by an oxygen atom from the carboxylate ligand and the alcoholic oxygen atom of the next carboxylate ligand in the chain. The carboxylate ligands coordinate in the zwitterionic form with the alcoholic proton moved to the nearby nitrogen atom.  相似文献   

18.
Be-doped TlBa2(Ca2−yBey)Cu3O10−δ (y=0, 0.25, 0.5, 0.75, and 1.0) superconductor bulk samples were synthesized by solid state reaction and characterized by X-ray diffraction (XRD), dc-resistivity {ρ (Ω cm)}, and Fourier Transform Infrared (FTIR) absorption spectroscopy. Fluctuations induced conductivity (FIC) analysis is carried out on temperature dependent dc-resistivity data of as-prepared and oxygen post-annealed TlBa2(Ca2−yBey)Cu3O10−δ superconductor samples by using Aslamazov–Larkin (AL) and Lawrence–Doniach (LD) models for excess conductivity. Different microscopic parameters such as zero temperature coherence length along c-axis {ξc(0)}, inter-layer coupling (J), inter-grain coupling (α), critical exponent (λD) and dimensionality of fluctuations are calculated for understanding the role of Be-doping on superconducting properties of TlBa2(Ca2−yBey)Cu3O10−δ samples. The cross-over temperature (To) is shifted towards higher temperature values with the increase of Be contents in TlBa2(Ca2−yBey)Cu3O10−δ samples. The increase in ξc(0) and J after Be-doping at Ca sites shows the improvement of inter-plane coupling in TlBa2(Ca2−yBey)Cu3O10−δ samples. The increase in zero resistivity critical temperature {Tc(R=0) (K)} up to y=0.5 and then decrease for y=0.75, 1.00 fixed the Be-doping level for optimum increase of superconducting properties of TlBa2(Ca2−yBey)Cu3O10−δ samples. The appreciable changes in all the microscopic parameters extracted from the FIC analysis and the increase in relative intensity of almost all the oxygen phonon modes indicate the oxygen diffusion in the unit cell after oxygen post-annealing the samples. The oxygen diffusion can take place at both inter-granular and intra-granular sites, which increase the superconducting volume fraction by improving the grains size, inter-grain connectivity and carrier density.  相似文献   

19.
(Ba1?xRx)(Ti1?xHox)O3 (R = La, Pr, Nd, Sm; x ≥ 0.04) (BRTH) ceramics were prepared using a mixed oxides method. The solubility limits in BRTH with R = La, Pr, Nd, Sm were determined by XRD to be x = 0.11, 0.12, 0.06, and 0.14, respectively. The ionic radius of R at Ti-site plays a decisive role in the solubility limit in BRTH. Only BRTH with R = La satisfied Vegard's law. The multiplicity of photoluminescence (PL) signals of Nd3+/Ho3+ and Sm3+/Ho3+ in Raman scattering under 532-nm excitation laser and the high-permittivity abnormality for the denser BRTH with R = Sm and at x = 0.07 were reported. The PL provided the evidence of a small number of Ho3+ at Ba-site in BRTH and it was determined that the number of Ba-site Ho3+ ions increased from 0.05 at% at R = La to 0.19 at% at R = Sm with increasing atomic number of light rare earth. BRTH exhibited a much broadened dielectric-temperature characteristics, marked by ×5 T, ×6 T, ×7 T, and ×8 S dielectric specifications for BRTH with R = La, Pr, Nd, Sm and at x = 0.06, respectively, and they exhibited lower dielectric loss (tan δ < 0.015) at room temperature. The dielectric-peak temperature (Tm) of BRTH decreased linearly at a rate of less than ?21 °C/%(R/Ho). The defect chemistry, solubility limit, lower dielectric loss, and dielectric abnormality are discussed.  相似文献   

20.
Sr(Ce0.6Zr0.4)0.9Y0.1O3 − δ was prepared by a wet chemical route and the stages of its formation, as well as the characterization of the resulting compounds were carried out using TG–DTA, XRD, TEM, SEM and EPMA techniques. Experimental results indicate that a calcination temperature of 900–1100 °C, which is much lower than that for the conventional solid state reaction process, is sufficient to the formation of single perovskite phase. Sr(Ce0.6Zr0.4)0.9Y0.1O3 − δ powders obtained are fine, narrowly distributed and well crystallized. This strongly improves the sinter properties and the formation of a dense Sr(Ce0.6Zr0.4)0.9Y0.1O3 − δ. Sintered at T ≥ 1350 °C, samples with density ≥97.16% of the theoretical could be obtained. In addition, the proton conductivities of Sr(Ce0.6Zr0.4)0.9Y0.1O3 − δ ceramic were measured by impedance spectroscopy in 5% H2/Ar and the evolution of the spectra with increasing temperature was analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号