首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Two pyridylphosphine ligands, 2-(diphenylphosphino)pyridine (DPPP) and 2-[(diphenylphosphino)methyl]pyridine (DPPMP), were investigated as complexing ligands in the iron-mediated atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) and styrene with various initiators and solvents. In studies of their ATRP behavior, the FeBr2/DPPP catalytic system was a more efficient ATRP catalyst for the MMA polymerization than the other complexes studied in this paper. Most of these systems were well controlled with a linear increase in the number-average molecular weights (Mn) vs. conversion and relatively low molecular weight distributions (Mw/Mn = 1.15-1.3) being observed throughout the reactions, and the measured molecular weights matched the predicted values with the DPPP ligand. The polymerization rate of MMA attained a maximum at a ratio of ligand to metal of 2:1 in p-xylene at 80 °C. The polymerization was faster in polar solvents than in p-xylene. The 2-bromopropionitrile (BPN) initiated ATRP of MMA with the FeX2/DPPP catalytic system (X = Cl, Br) was able to be controlled in p-xylene at 80 °C. The polymerization of styrene was able to be controlled using the PECl/FeCl2/DPPP system in DMF at 110 °C.  相似文献   

2.
The number average molar mass Mn of poly(octadecene-alt-maleic anhydride) (PODMA) copolymers calculated from data obtained by size exclusion chromatography (SEC) using a polystyrene (PS) calibration was found to be inaccurate. The use of SEC combined with dilute solution viscometry enabled a method to be developed using an iterative approach, which does not require knowledge of the Mark-Houwink constants for PODMA samples. A new calibration curve was constructed as a plot of molar mass Mu for PODMA. True number-average molar masses Mn (true) calculated using the new calibration are approximately twice the apparent molar mass Mn (app) based on a PS calibration for higher molar mass samples (>10?000 g mol−1).  相似文献   

3.
A well-defined, amphiphilic poly(styrene-co-acrylic acid) copolymer was synthesized in a single step by nitroxide-mediated controlled free-radical copolymerization of styrene and acrylic acid, without protection of the acid groups: Mn=6500 g mol−1, Mw/Mn=1.5 and a composition of FAA=0.70±0.03 in acrylic acid. In addition to the good control over molar mass and molar mass distribution, the copolymer exhibited a narrow composition distribution with a slight gradient. Such copolymer was an efficient stabilizer for the emulsion polymerizations of styrene and of mixtures of methyl methacrylate and n-butyl acrylate, until 45 wt% solids. A low amount (typically 3-4 wt% based on the monomer(s)) was needed for a good stabilization. This is approximately a decade lower than the required amount of random, amphiphilic copolymers prepared via conventional free-radical polymerization. The performances were, however, below those of analogous diblock copolymers, but the great advantage is the very easy synthetic procedure.  相似文献   

4.
Thermal polymerization of methyl (meth)acrylate (MMA) was carried out using 2-cyanoprop-2-yl-1-dithionaphthalate (CPDN) and cumyl dithionaphthalenoate (CDN) as chain transfer agents. The kinetic study showed the existence of induction period and rate retardation, especially in the CDN mediated systems. The molecular weights of the polymers increased linearly with the monomer conversion, and the molecular weight distributions (Mw/Mns) of the polymers were relatively narrow up to high conversions. The maximum number-average molecular weights (Mns) reached to 351?900 g/mol (Mw/Mn = 1.47) and 442?400 g/mol (Mw/Mn = 1.29) in the systems mediated by CPDN and CDN, respectively. Chain-extension reactions were also successfully carried out to obtain higher molecular weight PMMA and PMMA-block-polystyrene (PMMA-b-PSt) copolymer with controlled structure and narrow Mw/Mn. Thermal polymerization of methyl acrylate (MA) in the presence of CPDN, or benzyl (2-phenyl)-1-imidazolecarbodithioate (BPIC) also demonstrated “living”/controlled features with the experimented maximum molecular weight 312?500 g/mol (Mw/Mn = 1.57). The possible initiation mechanism of the thermal polymerization was discussed.  相似文献   

5.
In this work, the reversible addition-fragmentation chain transfer (RAFT) polymerization of vinyl acetate (VAc) was successfully performed at room temperature using 60Co γ-irradiation as the initiation source. Under the dose rate of 10 Gy/min irradiation, the polymerization proceeded smoothly and converted approximately 90% of the monomer within 7 h. The molecular weight distribution (Mw/Mn) remained narrow (Mw/Mn < 1.35) up to 90% conversion. Compared to AIBN-initiated RAFT polymerization at 60 °C, 60Co γ-irradiation-initiated RAFT polymerization is a technique that can better control the molecular weight, especially at high conversion. The 1H NMR spectra and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry confirmed that most of the chain ends of poly(VAc) (PVAc) from γ-irradiated RAFT polymerization were living and can be reactivated for chain-extension reactions. The microstructures of PVAc from 60Co γ-irradiated RAFT polymerization (almost head-to-tail addition) and AIBN-initiated RAFT polymerization (5% tail-to-tail addition) were different, as revealed by the 13C NMR spectra. For the first time, 60Co γ-irradiation was used as an initiation source for RAFT polymerization of VAc at room temperature.  相似文献   

6.
Homogeneous atom transfer radical polymerization of methyl methacrylate (MMA) under microwave irradiation (MI) with low concentration of initiating system [ethyl 2-bromobutyrate (EBB)/CuCl/N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA)] was successfully carried out in N,N-dimethylformamide (DMF) at 69 °C. Plots of ln ([M]0/[M]) vs. time and molecular weight evolution vs. conversion showed a linear dependence. A 27.3% conversion for a polymer with number-average molecular weight (Mn) of 57,280 and a polydispersity index (PDI) of 1.19, was obtained under MI (360 W) with the ratio of [MMA]0/[EBB]0/[CuCl]0/[PMDETA]0=2400/1/2/2 in only 150 min; but 963 min was needed under conventional heating (CH) process to reach a 26.0 % conversion (Mn=63,990 and PDI=1.14) under identical polymerization conditions, indicating a significant enhancement of the polymerization rate under MI.  相似文献   

7.
LaFeO3 were synthesized via a sol-gel route based on polyvinyl alcohol (PVA). Differential scanning calorimetry (DSC), Thermogravimetric (TG), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Raman spectroscopy and field emission scanning electron microscopy (FESEM) techniques were used to characterize precursors and derived oxide powders. The effect of the ratios of positively charged valences to hydroxyl groups of PVA (Mn+/-OH) on the formation of LaFeO3 was investigated. XRD analysis showed that single-phase and well-crystallized LaFeO3 was obtained from the Mn+/-OH = 4:1 molar ratio precursor at 700 °C. For the precursor with Mn+/-OH = 2:1, nanocrystalline LaFeO3 with average particle size of ∼50 nm was formed directly in the charring procedure. With increase of PVA content to Mn+/-OH = 1:1, phase pure LaFeO3 was obtained at 500 °C.  相似文献   

8.
Soluble NdCl3·3EHOH (2-ethyl hexanol) in hexane combined with AlEt3 is highly active for isoprene polymerization in hexane. The NdCl3·3EHOH/AlEt3 has higher activity than the typical binary catalyst NdCl3·3iPrOH (isopropanol)/AlEt3 and ternary catalyst NdV3 (neodymium versatate)/AlEt2Cl/Al(i-Bu)2H. The molecular weight of polyisoprenes can be controlled by variation of [Nd], [Al]/[Nd] ratio and polymerization temperature and time. The NdCl3·3EHOH/AlEt3 catalyst polymerized isoprene to afford products featuring high cis-1,4 stereospecificity (ca. 96%), high molecular weight (ca. 105) and relatively narrow molecular weight distributions (Mw/Mn = 2.0-2.8) simultaneously. More importantly, some living polymerization characteristics were demonstrated: (a) absence of chain termination; (b) linear correlation between Mn and polymer yield; (c) increment of molecular weight in the ‘seeding’ polymerization. Though some deviation from the typical living polymerization such as molecular weight distribution is not narrow enough and the line of Mn and polymer yield does not extrapolate to zero, controlled polymerization with the current catalyst can still be concluded.  相似文献   

9.
Polymerization of hex-1-ene and propene initiated by several methylalumoxane-activated diimine complexes was critically investigated. Effect of bulkiness of ortho aryl diimine substituents on extent of transfer reactions was examined. All of the complexes allowed us to prepare poly(hex-1-ene) with a very narrow molar mass distribution, molar mass being controlled by stoichiometry in a broad range of reaction conditions. Poly(hex-1-ene)s with molar mass between 15 and 220 kg mol?1 and dispersity (Mw/Mn) between 1.01 and 1.20 were prepared by varying the catalyst, temperature and monomer concentration. Livingness of hex-1-ene polymerization was demonstrated for the first time for nickel complex bearing ethyl ortho aryl substituents by reinitiation of chain growth upon addition of a new portion of monomer. Complexes with ortho methyl substituents did not allow complete reinitiation of chain growth and despite its good control over molar mass cannot be classified as a living polymerization catalyst. Chain branching can effectively be controlled by the choice of the ligand structure due to the chain-walking mechanism. Transfer reactions were more pronounced in propene polymerization. Polypropylene with narrow molar mass distribution could not be prepared using complexes with methyl substituents.  相似文献   

10.
A novel six-membered cyclic carbonate with pendent allyl ether group, 5-allyloxy-1,3-dioxan-2-one (ATMC), was synthesized from glycerol, and the corresponding polycarbonate, poly(5-allyloxy-1,3-dioxan-2-one) (PATMC) was further synthesized by ring-opening polymerization in bulk at 120 °C. Two kinds of catalyst, tin(II) 2-ethylhexanoate (Sn(Oct)2) and immobilized porcine pancreas lipase on silica particles (IPPL), were employed to perform the polymerization. The structures of the novel monomer and the resulting functional polymers were confirmed by FTIR, 1H NMR, 13C NMR, GPC and DSC. The molecular weight (Mn) of PATMC decreased rapidly with the increase of IPPL or Sn(Oct)2 concentration. The highest molecular weight (Mn = 48,700 g/mol) of PATMC with the polydispersity of 1.31 was obtained at 0.1 wt% concentration of IPPL for 48 h. Postpolymerization oxidation reactions to epoxidize the unsaturated bonds of the PATMC were also achieved. The epoxide-containing polymers could afford facilities for further modification.  相似文献   

11.
A star polymer was synthesized by addition of 1,4-diethynyl-2,5-dimethylbenzene as linking agent (30 °C, 24 h) after living polymerization of [(o-trifluoromethyl)phenyl]acetylene (o-CF3PA) with MoOCl4-n-Bu4Sn-EtOH catalyst (in anisole, 30 °C, 20 min; [Mo]=10 mM, [P]/[Mo]=40%, [o-CF3PA]0=200 mM). The Mn values of the living and star polymers were 8.1×103 and 5.3×104, respectively, according to gel permeation chromatography, while these values determined by multi-angle laser light scattering (MALLS) were 7.8×103 and 2.5×105. The Mw/Mn and arm number of the star polymer were 1.04 and 29, respectively, according to MALLS. The molecular weight and arm number of star polymer increased with increasing linking agent concentration and polymerization temperature.  相似文献   

12.
Lihui Cao  Weimin Dong  Xuequan Zhang 《Polymer》2007,48(9):2475-2480
The oxovanadium phosphonates (VO(P204)2 and VO(P507)2) activated by various alkylaluminums (AlR3, R = Et, i-Bu, n-Oct; HAlR2, R = Et, i-Bu) were examined in butadiene (Bd) polymerization. Both VO(P204)2 and VO(P507)2 showed higher activity than those of classical vanadium-based catalysts (e.g. VOCl3, V(acac)3). Among the examined catalysts, the VO(P204)2/Al(Oct)3 system (I) revealed the highest catalytic activity, giving the poly(Bd) bearing Mn of 3.76 × 104 g/mol, and Mw/Mn ratio of 2.9, when the [Al]/[V] molar ratio was 4.0 at 40 °C. The polymerization rate for I is of the first order with respect to the concentration of monomer. High thermal stability of I was found, since a fairly good catalytic activity was achieved even at 70 °C (polymer yield > 33%); the Mn value and Mw/Mn ratio were independent of polymerization temperature in the range of 40-70 °C. By IR and DSC, the poly(Bd)s obtained had high 1,2-unit content (>65%) with atactic configuration. The 1,2-unit content of the polymers obtained by I was nearly unchanged, regardless of variation of reaction conditions, i.e. [Al]/[V], ageing time, and reaction temperature, indicating the high stability of stereospecificity of the active sites.  相似文献   

13.
Cylindrical brushes with a macromolecular backbone and well-defined side chains of different length (4≤Pnsc≤38) were synthesized by polymerization of macromonomers. The effect of side chain length on the intermolecular order has been investigated by means of X-ray scattering on the melt-extruded samples. The increase of the side chain molar mass results in an increase of the intermolecular distance d according to d∼(Mnsc)0.476. The contour length of the cylindrical brush polymers per main chain monomer unit, lm, was determined to slightly vary with side chain molar mass Mnsc according to lm∼(Mnsc)0.059. The resulting values are much less than the maximum extension, which is found to be almost independent of side chain molar mass. Also, supermolecular structure formation of a random copolymer brush prepared by radical copolymerization of methacryloyl end functionalized polyvinylpyridine and polymethylmethacrylate macromonomers has been observed and is interpreted as a consequence of intramolecular phase separation.  相似文献   

14.
Living characteristics of facilely prepared Ziegler-Natta type catalyst system consisting of iron(III) 2-ethylhexanoate, triisobutylaluminum and diethyl phosphite have been found in the polymerization of 1,3-butadiene in hexane at 40 °C. The characteristics have been well demonstrated by: a first-order kinetics with respect to monomer conversion, a narrow molecular weight distribution (Mw/Mn = 1.48-1.52) of polybutadiene in the entire range of polymerization conversion and a good linearity between Mn and the yield of polymer. Feasible post-polymerization of 1,3-butadiene and block co-polymerization of 1,3-butadiene and isoprene further support the living natures of the catalyst bestowed with. The current catalyst system is highly active (yield > 80%, 35 min), providing polybutadiene with 1,2, cis-1,4 and trans-1,4 units about 44.0%, 51.0% and 5.0%, respectively.  相似文献   

15.
The tripodal ‘click’ compound tris(4‐trimethylsilylmethyl‐1,2,3‐triazolylmethyl)amine (TTTA) was prepared and investigated as a ligand for copper‐catalysed single‐electron transfer living radical polymerization of methyl methacrylate (MMA). Bulk polymerizations catalysed by Cu0/CuBr2/TTTA with a molar ratio of [MMA]0/[ethyl‐2‐bromoisobutyrate]0/[CuBr2]0/[TTTA]0 = 200:2:1:1 and a 1.0 × 1.0 cm2 Cu0 sheet were fast and well controlled (76% conversion with Mw/Mn = 1.19 after 3.5 h). Greater amounts of added air generally gave slower polymerizations although Mw/Mn remained low (<1.3) even when the polymerization was carried out under aerobic conditions. Decreasing initial concentrations of the Cu0/CuBr2/TTTA catalyst system or polymerization temperatures also resulted in slower polymerizations and yielded polymers with broader dispersity. Kinetic studies in the temperature range 40–90 °C revealed an apparent activation energy of 22.6 kJ mol?1. © 2014 Society of Chemical Industry  相似文献   

16.
Poly(methyl methacrylate) (PMMA) was synthesized via activators regenerated by electron transfer (ARGET) in atom transfer radical polymerization (ATRP) (ARGET ATRP) of methyl methacrylate in N,N-dimethylformamide and using ethyl 2-bromoisobutyrate as initiator, CuCl2 as catalyst, N,N,N′,N′-tetramethylethylene-diamine as ligand and ethanol as a reducing agent. The polymerization temperature was kept at 70 °C. A well-defined PMMA with predetermined molecular weight and narrow molecular weight distribution was obtained. A linear relationship between ln([M]0/[M]) and polymerization time was found to show the living and controllable radical polymerization. The molecular weights of the obtained polymers increased linearly with monomer conversion and the data are in good agreement with the theoretical values with narrow molecular weight distribution (M w/M n). That is to say, alcohols were found to be a kind of highly efficient agents in the presence of Na2CO3 in this system. The effects of temperature, different types of alcohols and the amount of n-propanol on the polymerization were investigated. With increasing temperature (changed from 70 to 90 °C) and the amount of n-propanol (changed from 500:1:1:2:1:2 to 500:1:1:2:10:2), the conversion increased from 15.6 to 34.7 % and from 8.6 to 26.8 %, respectively. However, the value of M w/M n became broader when the molar ratio of [MMA]0/[EBiB]0/[CuCl2]0/[TMEDA]0/[n-propanol]0/[Na2CO3]0 was 500:1:1:2:1:2, indicating that the amount of n-propanol played an important role in ARGET ATRP of MMA. The activation energy was calculated to be 51.96 kJ/mol. The different types of alcohol were demonstrated to be an efficient reducing agent in this system except for tert-butyl alcohol. The “living” feature of the obtained polymer was further verified by a chain extension experiment. The obtained polymer was characterized by 1H NMR and GPC.  相似文献   

17.
Wei Zhang 《Polymer》2007,48(9):2548-2553
A novel polymer brush consisting of poly(phenylacetylene) (PPA) main chain and poly(dimethylsiloxane) (PDMS) side chains was synthesized by the polymerization of phenylacetylene-terminated PDMS macromonomer (M-PDMS). The macromonomer was prepared by the esterfication of monohydroxy-ended PDMS (PDMS-OH, degree of polymerization (DP) = 42) with p-ethynylbenzoic acid. The polymerization of M-PDMS using [(nbd)RhCl]2/Et3N catalyst led to polymer brush, poly(M-PDMS), with Mn up to 349?000 (DP of main chain 104). Poly(M-PDMS) with narrow molecular weight distribution (Mn = 39?900, Mw/Mn = 1.11) was obtained with a vinyl-Rh catalyst, [Rh{C(Ph)CPh2}(nbd){P(4-FC6H4)3}]/(4-FC6H4)3P. Poly(M-PDMS)s were brown to orange viscous liquids and soluble in organic solvents such as toluene and CHCl3. The UV-vis absorptions of poly(M-PDMS) were observed in the range of 350-525 nm, which are attributable to the PPA main chain.  相似文献   

18.
H ZhangZ Yu  X WanQ.-F Zhou  E.M Woo 《Polymer》2002,43(8):2357-2361
The synthesis of poly{2,5-bis[(4-methoxyphenyl)oxycarbonyl]styrene} (PMPCS) with different molecular weight and low polydispersity was achieved by atom transfer radical polymerization in methoxybenzene solution using 1-bromoethylbenzene as an initiator and CuBr/sparteine complex as a catalyst. The concentration of the living centers throughout the polymerization was found to be constant. The liquid-crystalline behavior of the polymers with Mn ranging from 3800 to 17,400 g/mol was studied using DSC and POM. Only the polymers with Mn beyond 10,200 g/mol formed a liquid-crystalline phase, which was quite stable with a high clearing point (higher than the decomposition temperature of the polymer).  相似文献   

19.
20.
Isotactic polypropylene (iPP)-polystyrene (PS) and iPP-poly(methyl methacrylate) (PMMA) multiblock copolymers were synthesized by atom transfer radical coupling (ATRC) of PS-iPP-PS and PMMA-iPP-PMMA triblock copolymers obtained by atom transfer radical polymerization (ATRP) of styrene (St) and methyl methacrylate (MMA), respectively, using α,ω-dibromoisobutyrateoligopropylene (iPP-Br) as a bifunctional macroinitiator. The iPP-Br was prepared by hydroxylation and subsequent esterification of telechelic oligopropylene having terminal vinylidene double bonds at both ends obtained by controlled thermal degradation of iPP. ATRP of St and (meth) acrylic monomers using iPP-Br formed the corresponding triblock copolymers. It was confirmed that the PMMA-iPP-PMMA triblock copolymer was effective as the compatibilizer for the iPP/PMMA blend. An iPP-PS multiblock copolymer (Mn: 25?000 g/mol and Mw/Mn: 4.1) was prepared by ATRC of PS-iPP-PS triblock copolymer (Mn: 8900 g/mol and Mw/Mn: 1.3). ATRC with St of PMMA-iPP-PMMA triblock copolymer (Mn: 13?000 g/mol and Mw/Mn: 1.4) provided an iPP-PMMA multiblock copolymer containing St chains (Mn: 39?000 g/mol and Mw/Mn: 2.8).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号