首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements during solar particle events with dosemeters flying permanently on-board Concorde are used to develop a semi-empirical model, called SiGLE. The model is intended to calculate, for a given flight plan, the dose equivalent received during a solar particle event observed with ground-based neutron monitors. It is successfully in operation in the SIEVERT computerised system intended to improve monitoring of radiation dose received by aircrews, in application to a European Directive. The semi-empirical model is applied to evaluate, for most exposed routes, the radiation doses corresponding to the GLEs observed since 1942 with ion chambers or neutron monitors. The results for the largest GLEs observed in the past are discussed in terms of radiation risk, and guidelines are suggested concerning possible alerts to the aeroplanes in case of events of exceptional magnitude.  相似文献   

2.
A methodology is presented for collecting and analysing exposure measurements from galactic cosmic radiation using a portable equipment suite and encapsulating these data into a semi-empirical model/Predictive Code for Aircrew Radiation Exposure (PCAIRE) for the assessment of aircrew radiation exposure on any flight over the solar cycle. The PCAIRE code has been validated against integral route dose measurements at commercial aircraft altitudes during experimental flights made by various research groups over the past 5 y with code predictions typically within +/-20% of the measured data. An empirical correlation, based on ground-level neutron monitoring data, is detailed further for estimation of aircrew exposure from solar particle events. The semi-empirical models have been applied to predict the annual and career exposure of a flight crew member using actual flight roster data, accounting for contributions from galactic radiation and several solar energetic-particle events over the period 1973-2002.  相似文献   

3.
An on-going investigation using a tissue-equivalent proportional counter (TEPC) has been carried out to measure the ambient dose equivalent rate of the cosmic radiation exposure of aircrew during a solar cycle. A semi-empirical model has been derived from these data to allow for the interpolation of the dose rate for any global position. The model has been extended to an altitude of up to 32 km with further measurements made on board aircraft and several balloon flights. The effects of changing solar modulation during the solar cycle are characterised by correlating the dose rate data to different solar potential models. Through integration of the dose-rate function over a great circle flight path or between given waypoints, a Predictive Code for Aircrew Radiation Exposure (PCAIRE) has been further developed for estimation of the route dose from galactic cosmic radiation exposure. This estimate is provided in units of ambient dose equivalent as well as effective dose, based on E/H x (10) scaling functions as determined from transport code calculations with LUIN and FLUKA. This experimentally based treatment has also been compared with the CARI-6 and EPCARD codes that are derived solely from theoretical transport calculations. Using TEPC measurements taken aboard the International Space Station, ground based neutron monitoring, GOES satellite data and transport code analysis, an empirical model has been further proposed for estimation of aircrew exposure during solar particle events. This model has been compared to results obtained during recent solar flare events.  相似文献   

4.
During 2003, a portable instrument suite was used to conduct cosmic radiation measurements on 49 jet-altitude flights, which brings the total number of in-flight measurements by this research group to over 160 flights since 1999. From previous measurements, correlations have been developed to allow for the interpolation of the dose-equivalent rate for any global position, altitude and date. The result was a Predictive Code for Aircrew Radiation Exposure (PCAIRE), which has since been improved. This version of the PCAIRE has been validated against the integral route dose measurements made at commercial aircraft altitudes during the 49 flights. On most flights, the code gave predictions that agreed to the measured data (within +/- 25%), providing confidence in the use of PCAIRE to predict aircrew exposure to galactic cosmic radiation. An empirical correlation, based on ground-level neutron monitoring data, has also been developed for the estimation of aircrew exposure from solar energetic particle (SEP) events. This model has been used to determine the significance of SEP exposure on a theoretical jet altitude flight during GLE 42.  相似文献   

5.
The study of naturally occurring radiation and its associated risk is one of the preoccupations of bodies responsible for radiation protection. Cosmic particle flux is significantly higher on-board the aircraft that at ground level. Furthermore, its intensity depends on solar activity and eruptions. Due to their professional activity, flight crews and frequent flyers may receive an annual dose of some millisieverts. This is why the European directive adopted in 1996 requires the aircraft operators to assess the dose and to inform their flight crews about the risk. The effective dose is to be estimated using various experimental and calculation means. In France, the computerised system for flight assessment of exposure to cosmic radiation in air transport (SIEVERT) is delivered to airlines for assisting them in the application of the European directive. This professional service is available on an Internet server accessible to companies with a public section. The system provides doses that consider the routes flown by aircraft. Various results obtained are presented.  相似文献   

6.
7.
The complexity of radiation environments in space makes estimation of risks more difficult than for the protection of terrestrial populations. In deep space the duration of the mission, position in the solar cycle, number and size of solar particle events (SPE) and the spacecraft shielding are the major determinants of risk. In low-earth orbit missions there are the added factors of altitude and orbital inclination. Different radiation qualities such as protons and heavy ions and secondary radiations inside the spacecraft such as neutrons of various energies, have to be considered. Radiation dose rates in space are low except for short periods during very large SPEs. Risk estimation for space activities is based on the human experience of exposure to gamma rays and to a lesser extent X rays. The doses of protons, heavy ions and neutrons are adjusted to take into account the relative biological effectiveness (RBE) of the different radiation types and thus derive equivalent doses. RBE values and factors to adjust for the effect of dose rate have to be obtained from experimental data. The influence of age and gender on the cancer risk is estimated from the data from atomic bomb survivors. Because of the large number of variables the uncertainities in the probability of the effects are large. Information needed to improve the risk estimates includes: (1) risk of cancer induction by protons, heavy ions and neutrons: (2) influence of dose rate and protraction, particularly on potential tissue effects such as reduced fertility and cataracts: and (3) possible effects of heavy ions on the central nervous system. Risk cannot be eliminated and thus there must be a consensus on what level of risk is acceptable.  相似文献   

8.
Correlations have been developed for implementation into the semi-empirical Predictive Code for Aircrew Radiation Exposure (PCAIRE) to account for effects of extremum conditions of solar modulation and low altitude based on transport code calculations. An improved solar modulation model, as proposed by NASA, has been further adopted to interpolate between the bounding correlations for solar modulation. The conversion ratio of effective dose to ambient dose equivalent, as applied to the PCAIRE calculation (based on measurements) for the legal regulation of aircrew exposure, was re-evaluated in this work to take into consideration new ICRP-92 radiation-weighting factors and different possible irradiation geometries of the source cosmic-radiation field. A computational analysis with Monte Carlo N-Particle eXtended Code was further used to estimate additional aircrew exposure that may result from sporadic solar energetic particle events considering real-time monitoring by the Geosynchronous Operational Environmental Satellite. These predictions were compared with the ambient dose equivalent rates measured on-board an aircraft and to count rate data observed at various ground-level neutron monitors.  相似文献   

9.
Owing to their professional activity, flight crews may receive a dose of some millisieverts within a year; airline passengers may also be concerned. The effective dose is to be estimated using various experimental and calculation tools. The European project DOSMAX (Dosimetry of Aircrew Exposure during Solar Maximum) was initiated in 2000 extending to 2004 to complete studies over the current solar cycle during the solar maximum phase. To compare various dosemeters in real conditions simultaneously in the same radiation field, an intercomparison was organised aboard a Paris-Tokyo round-trip flight. Both passive and active detectors were used. Good agreement was observed for instruments determining the different components of the radiation field; the mean ambient dose equivalent for the round trip was 129 +/- 10 microSv. The agreement of values obtained for the total dose obtained by measurements and by calculations is very satisfying.  相似文献   

10.
In May 2000, the chairman of the European Radiation Dosimetry Group (EURADOS) invited a number of experts with experience of cosmic radiation dosimetry to form a working group (WG 5) on aircraft crew dosimetry. Three observers from the Article 31 Group of Experts as well as one observer from the Joint Aviation Authorities (JAA) were also appointed. The European Commission funded the meetings. Full meetings were organised in January 2001 and in November 2001. An editorial group, who are the authors of this publication, started late in 2002 to finalise a draft report, which was submitted to the Article 31 Group of Experts in June 2003. The methods and data reported are the product of the work of 26 research institutes from the EU, USA and Canada. Some of the work was supported by contracts with the European Commission, Directorate General XII, Science, Research and Development. A first overview of the EC report was published late in 2004. In this publication we focus on a comparison of measured and calculated ambient dose rate data using the EURADOS In-Flight Data Base. The evaluation of results obtained by different methods and groups, and comparison of measurement results and the results of calculations were performed in terms of the operational quantity ambient dose equivalent, H*(10). Aspects of measurement uncertainty are reported also. The paper discusses the estimation of annual doses for given flight hours and gives an outline of further research needed in the field of aircraft crew dosimetry, such as the influence of solar particle events.  相似文献   

11.
When astronauts are outside earth's protective magnetosphere, they are subject to large radiation doses resulting from solar particle events (SPEs). The total dose received from a major SPE in deep space could cause severe radiation poisoning. The dose is usually received over a 20-40 h time interval but the event's effects may be mitigated with an early warning system. This paper presents a method to predict the total dose early in the event. It uses a locally weighted regression model, which is easier to train and provides predictions as accurate as neural network models previously used.  相似文献   

12.
13.
For the purposes of dose limitation and dose control, the harm, or detriment, of exposure to radiation is assessed by the quantity effective dose. Effective dose is evaluated by the application of factors to the averaged absorbed dose in the organs and tissues of the body. Radiation monitoring instruments are generally calibrated in terms of the quantity ambient dose equivalent which is defined in a simple spherical phantom. The relationship of these quantities is described. Requirements for the radiation protection of aircraft crew are given in the European Union Council Directive 96/29/EURATOM. There are requirements to assess the exposure of aircraft crew, to inform them of health risks, to reduce higher doses, and to control the dose to the fetus. There are no explicit dose limits, other than a dose objective to be applied to the exposure of the fetus, and no requirements for designation of areas or classification of workers. There are significant differences between the exposure condition of aircraft crew and workers in most other industries where there is occupational exposure to radiation. There are greater ranges of radiation types and energy, and there are different dose distributions and characteristics of the working populations. However, the field intensity is predictable and, with the exception of rare solar events, there is no risk of significant unexpected exposures. Dose assessment is anticipated to be by folding staff roster information with estimates of route doses, since there is little variability of dose rate within an aircraft. Route doses, which may be either an agreed average value for a given airport pairing and aircraft type, or be flight specific, will be closely linked to measured values. Requirements as to the accuracy of dose assessment should be applied which are broadly similar to those used in individual monitoring generally.  相似文献   

14.
Aircraft crew and frequent flyers are exposed to elevated levels of cosmic radiation of galactic and solar origin and secondary radiation produced in the atmosphere, the aircraft structure and its contents. Following recommendations of the International Commission on Radiological Protection in Publication 60, the European Union introduced a revised Basic Safety Standards Directive, which included exposure to natural sources of ionising radiation, including cosmic radiation, as occupational exposure. The revised Directive has been incorporated into laws and regulations in the European Union Member States. Where the assessment of the occupational exposure of aircraft crew is necessary, the preferred approach to monitoring is by the recording of staff flying times and calculated route doses. Route doses are to be validated by measurements. This paper gives the general background, and considers the radiation protection aspects of the cosmic radiation exposure of aircraft crew, with the focus on the situation in Europe.  相似文献   

15.
Radiation field produced by cosmic radiations in the earth's atmosphere is very complex and is significantly different from that found in the nuclear industry and other environments at ground level. Aircraft crew and frequent flyers are exposed to high levels of cosmic radiations of galactic and solar origin and to secondary radiation produced in the atmosphere. Following recommendations of the International Commission on Radiological Protection in publication 60, the European Union introduced a revised Basic Safety Standard Directive, which included exposure to natural sources of ionising radiations, including cosmic radiation, as occupational exposure. We computed the dose received by some Tunisian flights, using CARI-6, EPCARD, PCAIRE, and SIEVERT codes. Calculations performed during the year 2007, on mostly regular passenger flights of the Nouvelair Tunisian Company, indicate a mean effective dose rate ranging between 3 and 4 microSv/h. We give the general background and details, focusing on the situation in Tunisia with respect to radiation protection aspects of the cosmic radiation exposure. As far as we know, such a study has not previously been carried out.  相似文献   

16.
The cosmic ray field at civil aviation altitudes consists of low-ionising radiations and neutrons with different energies. At the meeting on radiation exposure of civil air-crew held in Luxembourg in 1991, it was pointed out that there was a need to obtain a better evaluation of the dose with special regard to that of high energy neutrons. This problem has been tackled within the multinational research programmes of the Commission of the European Communities. These research activities made it possible to set up and calibrate the most advanced systems for the assessment of the occupational exposure of aircraft crew. In particular, two advanced neutron spectrometers have been developed, which cover the entire energy range of neutrons. Under the CEC contracts, a large variety of data has been gathered on many longhaul flights, using different dosimetric systems. Since most of the data have been gathered during the period of solar minimum (1994-1997) they represent an upper limit of the dose due to galactic cosmic rays.  相似文献   

17.
In the framework of an epidemiological study regarding the correlation between solar UV radiation exposure and skin pathologies in a population of outdoor workers, the possibility of using polysulphone film personal dosemeters to quantify the Subjects UVB exposure has been evaluated. An original experimental set-up is presented. in a preliminary version, which ill be used both for solar irradiance spectroradiometric measurements and for the reading of personal dosemeters. The polysulphone absorption is similar to the CIE erythemal response curve. Due to UVB radiation exposure, the polysulphone film dosemeters photodegrade with a measrable absorbance change. The absorbance variation after the dosemeter exposure to UV radiation has been correlated to the UVB effective dose. The calibration curve obtained by this method may be particularly useful for the evaluation of small closes. The method will be used to quantify the personal exposure of workers whose exposure conditions are characterised by high variability.  相似文献   

18.
19.
Radiation in space generally produces higher dose rates than that on the Earth's surface, and contributions from primary galactic and solar events increase with altitude within the magnetosphere. Presently, no personnel monitor is available to astronauts for real-time monitoring of dose, radiation quality and regulatory risk. This group is developing a prototypic instrument for use in an unknown, time-varying radiation field. This microdosemeter-dosemeter nucleon instrument is for use in a spacesuit, spacecraft, remote rover and other applications. It provides absorbed dose, dose rate and dose equivalent in real time so that action can be taken to reduce exposure. Such a system has applications in health physics, anti-terrorism and radiation-hardening of electronics as well. The space system is described and results of ground-based studies are presented and compared with predictions of transport codes. An early prototype in 2007 was successfully launched, the only solid-state microdosemeter to have flown in space.  相似文献   

20.
Can Ekici  Ismail Teke 《Mapan》2018,33(3):233-240
Solar radiation is the main energy source for activities in the earth. It is important that the solar radiation values are known accurately. In cases where parameters about solar radiation cannot be measured, solar radiation estimation models are used. These are mathematical functions derived from the measured meteorological parameters. In this study, temperature-based estimation models that commonly used in the literature were examined, and uncertainty analysis of the models were applied. These solar radiation estimation models are Allen model, Hargreaves model, Chen model and Bristow–Campbell model. These models calculate the total global solar radiation with the difference between the maximum and minimum air temperatures. Measurement uncertainty budgets of the models and an example calculation can be found in the study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号