首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli O157:H7 is an important foodborne pathogen, and foods of bovine origin and fresh produce have been linked to outbreaks. Real-time multiplex PCR assays were developed to detect E. coli O157:H7 in different foods. Apple cider and raw milk (25 ml) and ground beef and lettuce (25 g) were inoculated with 2 or 20 colony-forming units (CFU) of E. coli O157:H7 380-94 and subjected to enrichment in RapidChek E. coli O157:H7 broth at 42°C. One milliliter of the enrichments was removed at 8 and 20 h, and following DNA extraction, real-time multiplex PCR assays targeting the stx 1, stx 2, and wzy O157 genes in combination with probes and primers targeting either the fliC h7 or the eae genes were performed using OmniMix HS beads and the SmartCycler. The sensitivity of the real-time multiplex PCR assay was about 225 CFU/PCR. E. coli O157:H7 was detected (fluorescent signal generated for all gene targets) in apple cider, raw milk, lettuce and ground beef samples inoculated with 2 or 20 CFU/g or 25 ml after both 8 and 20 h of enrichment. Enrichments of uninoculated food samples were negative using the multiplex PCR targeting the stx 1, stx 2, wzy O157, and eae genes; however, using the assay targeting the stx 1, stx 2, wzy O157, and fliC h7 gene combination, a positive result was always obtained for the fliC h7 gene using uninoculated ground beef enrichments. Use of other primer sets targeting the fliC h7 gene gave similar results. The real-time multiplex PCR assays targeting the stx 1, stx 2, eae, and wzy O157 or the fliC h7 genes are sensitive and specific and can be used for the detection of E. coli O157:H7 in food, except that the fliC h7 gene may not be a suitable target for the detection of E. coli O157:H7 in ground beef.  相似文献   

2.
Meat and meat products have been implicated in outbreaks of Escherichia coli O157:H7 in most parts of the world. In the Amathole District Municipality of the Eastern Cape Province of South Africa, a large number of households consume meat and meat products daily, although the microbiological quality of these types of food is questionable. The present study investigated the prevalence of E. coli O157:H7 isolated from selected meat and meat products (45 samples each of biltong, cold meat, mincemeat, and polony) sold in this area. Strains of E. coli O157:H7 were isolated by enrichment culture and confirmed by polymerase chain reaction (PCR). Also investigated were the antibiogram profiles of the E. coli O157:H7 isolates. Five (2.8%) out of 180 meat and meat products examined were positive for E. coli O157:H7 that carried the fliCH7, rfbEO157, and eaeA genes. Two of the E. coli O157:H7 isolates were resistant against all the eight antibiotics tested. To prevent E. coli O157:H7 infections, meat and meat products such as biltong, cold meat, mincemeat and polony should be properly handled, and packed in sterile polyvinyl wrappers.  相似文献   

3.
The examination of 2005 raw bovine (n = 950), caprine (n = 460) and ovine (n = 595) bulk milk samples collected throughout several regions in Greece for the presence of Escherichia coli serogroup O157 resulted in the isolation of 29 strains (1.4%) of which 21 were isolated from bovine (2.2%), 3 from caprine (0.7%) and 5 from ovine (0.8%) milk. Out of the 29 E. coli O157 isolates, only 12 (41.4%) could be classified as Shiga-toxigenic based on immunoassay and PCR results. All 12 Shiga-toxigenic E. coli serogroup O157 isolates belonged to the E. coli O157:H7 serotype. All except one of the 12 Shiga-toxin positive isolates were stx2-positive, five of which were also stx1-positive. The remaining isolate was positive only for the stx1 gene. All stx-positive isolates (whether positive for stx1, stx2 or stx1 and stx2) were also PCR-positive for the eae and ehxA genes. The remaining 17 E. coli O157 isolates (58.6%) were negative for the presence of the H7 flagellar gene by PCR, tested negative for Shiga-toxin production both by immunoassay and PCR, and among these, only four and three strains were PCR-positive for the eae and ehxA genes, respectively. All 29 E. coli O157 isolates displayed resistance to a wide range of antimicrobials, with the stx-positive isolates being, on average, resistant to a higher number of antibiotics than those which were stx-negative.  相似文献   

4.
Cattle are a common reservoir for Escherichia coli O157:H7. Prior to confirming its presence in a sample, proper isolation of E. coli O157 is necessary. Consequently, this study evaluated the ability of five commercial plating media to isolate E. coli O157 from 138 samples of fresh cattle faeces, water from water trough and pond, and surfaces of water trough and hay bunk. For the isolation of E. coli O157, samples were enriched in tryptic soya broth, followed by immunoseparation and then plating on SMAC, CT‐SMAC, CHROMagar? O157, Tellurite CHROMagar? O157 and Vancomycin Cefixime Cefsoludin CHROMagar? O157. Real‐time PCR targeting genes stx1, stx2 and wzyO157 was used to confirm selected isolates. When analysed together, CT‐SMAC and CHROMagar? O157 were the best combination for isolating E. coli O157, giving 79% true‐positive results and only 0.05% false‐negative results.  相似文献   

5.
Concerning potential food safety and/or public health risks raised by viable but non-culturable (VBNC) state bacteria, factors affecting its occurrence during thermosonication were summarised. The relative ratios of Salmonella and Escherichia coli in the VBNC state were higher than that of Staphylococcus aureus, suggesting that the tested gram-negative bacteria would be more likely to survive in this state than S. aureus (gram-positive). The culturability of bacteria was easier to be retained in neutral pH environment, resulting in a reduced likelihood of entering into a VBNC state. Non-occurrence of a VBNC state by moderate heat of 32–57 °C was observed, facilitated in combination with sonication and being correlated with thermosonication conditions. Adding sodium pyruvate before thermosonication treatments could prevent the occurrence of a VBNC state, though the molecular mechanism of it is not clearly known and needs further elucidation.  相似文献   

6.
Abstract: Leafy greens such as cilantro, contaminated with Escherichia coli O157:H7, have been implicated in cases of human illnesses. High levels of microflora in fresh cilantro make recovery of low numbers of E. coli O157:H7 difficult. To improve upon current methods, immunomagnetic separation (IMS) techniques in combination with real‐time PCR (RTiPCR) and selective enrichment protocols were examined. Rinsates were prepared from cilantro samples inoculated with low (~0.02 CFU/g) and slightly higher (~0.05 CFU/g) levels of E. coli O157:H7. Rinsate portions were enriched in modified buffered peptone water with pyruvate (mBPWp) for 5 h at 37 °C. After 5 h, selective agents were added to samples and further incubated at 42 °C overnight. Detection and recovery were attempted at 5 and 24 h with and without IMS. IMS beads were screened by RTiPCR for simultaneous detection of stx1, stx2, and uidA SNP. Additionally, broth cultures and IMS beads were streaked onto selective agar plates (Rainbow®agar, R&F®E. coli O157 Chromogenic medium, TC‐SMAC and CHROMagar? 0157) for isolation of E. coli O157:H7. Both broth cultures and IMS beads were also acid treated in Trypticase Soy Broth pH 2 prior to plating to selective media to improve upon cultural recovery. Although E. coli O157 strains were detected in most samples by PCR after 5 h enrichment, cultural recovery was poor. However, after 24 h enrichment, both PCR and cultural recovery were improved. Acidification of the broths and the IMS beads prior to plating greatly improved recovery from 24 h enrichment broths by suppressing the growth of competing microorganisms. Practical Application: Detection and recovery of Escherichia coli O157:H7 in fresh produce matrices (e.g., cilantro) can be complicated by high background microflora present in these foods. Rapid detection by molecular methods combined with effective enrichment and isolation procedures such as using immunomagnetic separation (IMS) techniques can quickly identify potential hazards to public health. Additional techniques such as acidification of enrichment broths can exploit acid resistance characteristics of pathogens such as E. coli O157:H7, facilitating their isolation in complex food matrices.  相似文献   

7.
Contaminated leafy green vegetables have been linked to several outbreaks of human gastrointestinal infections. Antimicrobial interventions that are adoptable by the fresh produce industry for control of pathogen contamination are in great demand. This study was undertaken to evaluate the efficacy of sustained active packaging on control of Escherichia coli O157:H7 and total aerobic bacteria on lettuce. Commercial Iceberg lettuce was inoculated with a 3‐strain mixture of E. coli O157:H7 at 102 or 104 CFU/g. The contaminated lettuce and un‐inoculated controls were placed respectively in 5 different active packaging structures. Traditional, nonactive packaging structure was included as controls. Packaged lettuce was stored at 4, 10, or 22 °C for 3 wk and sampled weekly for the population of E. coli O157:H7 and total aerobic bacteria. Results showed that packaging structures with ClO2 generator, CO2 generator, or one of the O2 scavengers effectively controlled the growth of E. coli O157:H7 and total aerobic bacteria under all storage conditions. Packaging structure with the ClO2 generator was most effective and no E. coli O157:H7 was detected in samples packaged in this structure except for those that were inoculated with 4 log CFU/g of E. coli O157:H7 and stored at 22 °C. Packaging structures with an oxygen scavenger and the allyl isothiocyanate generator were mostly ineffective in control of the growth of the bacteria on Iceberg lettuce. The research suggests that some of the packaging structures evaluated in the study can be used to control the presence of foodborne pathogens on leafy green vegetables.  相似文献   

8.
Trisodium phosphate (TSP) was evaluated for removing attached E. coli O157:H7 and S. typhimurium from beef surfaces using microbiological plating and scanning electron microscopy (SEM). Both fat and fascia surfaces were exposed to 109 CFU/mL of each inoculum for 15 min and rinsed with 10% TSP solution (10°C) for 15 sec. Compared to controls, the level of E. coli O157:H7 was 1.35 and 0.92-logs lower on TSP-treated fat and fascia surfaces, respectively by plating. .S. typhimurium was 0.91- and 0.51-logs lower, respectively. By SEM, TSP-treated fabcia surfaces showed 1.39-log and 0.86-log reductions in E. coli O157:H7 and S. typhimurium, respectively. Overall, TSP was more effective on removing E. coli O157:H7 than S. typhimutium and more efficient in removing both bacteria from fat surfaces than from fascia.  相似文献   

9.
This study characterized the types of interactions between Escherichia coli O157:H7 and spinach phylloepiphytic bacteria and identified those that influence persistence of E. coli O157:H7 on edible plants. A total of 1512 phylloepiphytic bacterial isolates were screened for their ability to inhibit or to enhance the growth of E. coli O157:H7 in vitro and on spinach leaf surfaces. Fifteen different genera, the majority belonging to Firmicutes and Enterobacteriaceae, reduced growth rates of E. coli O157:H7 in vitro by either nutrient competition or acid production. Reduced numbers of E. coli O157:H7 were recovered from detached spinach leaves that were co-inoculated with epiphytic isolates belonging to five genera. A 1.8 log reduction in E. coli O157:H7 was achieved when co-inoculated with Erwinina perscinia and 20% cellobiose, a carbon source used by the phylloepiphytes but not E. coli O157:H7. The reduction on leaves was significantly less than reduction measured in vitro. Phylloepiphytic bacteria belonging to eight different genera, increased numbers of E. coli O157:H7 when co-cultured in vitro on spent medium and when co-cultured on detached spinach leaves. The results, showing reduction of E. coli O157:H7 numbers by natural epiphytic bacteria, support the hypothesis that native plant microbiota can be used for bio-control of foodborne pathogens, however, other epiphytes may promote the persistence of enteric pathogens on the phyllosphere.  相似文献   

10.
《Food microbiology》2004,21(1):79-82
E. coli O157 is a foodborne pathogen responsible for serious human illnesses, such as hemorrhagic colitic and hemolytic uremic syndrome. Ground beef products are among the foods that are more commonly contaminated, and the strains isolated have been frequently found to carry virulence factors of this pathotype. This paper reports the results of serotyping assays and of investigations performed to screen for virulence factors of 10 E. coli O157 strains isolated from fresh sausages purchased at retail meat outlets in various provinces of Apulia (southern Italy). The presence of verocytotoxins was assessed on VERO cells and ELISA tests. Multiplex PCR assays were performed for the eae, stx1, stx2 and hlyA genes. Six of the 10 strains examined presented the H7 antigen and all of them proved to be potentially pathogenic due to the presence of individual or multiple virulence factors.  相似文献   

11.
Longissimus dorsi from beef, pork, and lamb and turkey breast and leg meats were inoculated with Escherichia coli O157:H7, Listeria monocytogenes, Salmonella spp., and Staphylococcus aureus, and the gamma radiation resistance of the pathogens were determined under identical conditions. At 5°C the respective radiation D-values of E. coli O157:H7 and L. monocytogenes did not vary with the suspending meat. The D-value for a mixture of Salmonella spp. was significantly lower on pork than on beef, lamb, turkey breast, and turkey leg meats. The D-value for S. aureus was significantly lower on lamb and mechanically deboned chicken meat than on the other meats. All values were, nevertheless, within expected ranges.  相似文献   

12.
ABSTRACT: Inactivation of Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes in iceberg lettuce by aqueous chlorine dioxide (ClO2) treatment was evaluated. Iceberg lettuce samples were inoculated with approximately 7 log CFU/g of E. coli O157:H7, S. typhimurium, and L. monocytogenes. Iceberg lettuce samples were then treated with 0, 5, 10, or 50 ppm ClO2 solution and stored at 4 °C. Aqueous ClO2 treatment significantly decreased the populations of pathogenic bacteria on shredded lettuce (P < 0.05). In particular, 50 ppm ClO2 treatment reduced E. coli O157:H7, S. typhimurium, and L. monocytogenes by 1.44, 1.95, and 1.20 log CFU/g, respectively. The D10‐values of E. coli O157:H7, S. typhimurium, and L. monocytogenes in shredded lettuce were 11, 26, and 42 ppm, respectively. The effect of aqueous ClO2 treatment on the growth of pathogenic bacteria during storage was evaluated, and a decrease in the population size of these pathogenic bacteria was observed. Additionally, aqueous ClO2 treatment did not affect the color of lettuce during storage. These results suggest that aqueous ClO2 treatment can be used to improve the microbial safety of shredded lettuce during storage.  相似文献   

13.
Beef steaks and ground beef were inoculated with Listeria monocytogenes, Yersinia enterocolitica, or Escherichia coli O157:H7. Samples were packaged in air or under vacuum and irradiated at low (0.60 to 0.80 kGy) or medium (1.5 to 2.0 kGy) doses, with each dose delivered at either a low (2.8 M/min conveyor speed) or high (6.9 M/min) dose rate. Medium-dose irradiation accompanied by 7°C storage resulted in no Y. enterocolitica or E. coli O157:H7 survivors being detected. There was no effect on survival of the pathogens by dose rate or storage atmosphere. No difference (P>0.05) was observed in meat pH or color, but TBA values increased after 7 days storage.  相似文献   

14.
A 7-plex PCR assay was developed to achieve an effective detection and identification of serotype Enteritidis of Salmonella spp. and shiga toxin-producing type of Escherichia coli O157 in meat products. Six DNA sequences in the invA and sdfI genes of Salmonella Enteritidis as well as rfbE, eae, stx1, and stx2 genes of E. coli O157:H7 were employed to design primers. The multiplex PCR assay could specifically and sensitively detect and identify target pathogens. Applying the assay to meat samples, the multiplex PCR assay was able to simultaneously detect and identify the two pathogens at a sensitivity of three CFU/10 g raw meats after simple 16 h enrichment in buffered peptone water. Further applying in 21 retail meat samples revealed that two samples were positive for non-shiga toxin producing E. coli O157, one sample was positive for Stx2 producing E. coli O157 and five samples were positive for Salmonella enterica Enteritidis. Taken together, the 7-plex PCR assay is a rapid and reliable method for effectively screening single or multiple pathogens occurrences in various meat products, and could also identify the Salmonella enterica Enteritidis from all Salmonella spp. and shiga toxin producing type from all E. coli strains. Considering as a non expensive screening tool, the multiplex PCR assay has a great potential in complement for food stuff analysis by conventional microbiological tests.  相似文献   

15.
Rico Suhalim  Gary J. Burtle 《LWT》2008,41(6):1116-1121
Survival of Escherichia coli O157:H7 in channel catfish (Ictalurus punctatus), pond and holding tank water was investigated. Water from three channel catfish ponds was inoculated with ampicillin/nalidixic acid-resistant E. coli O157:H7 transformed with a plasmid encoding for green fluorescent protein at 105, 106, and 107 CFU/ml. Samples were taken from surface, internal organs, and skin scrape of fish and pond water for E. coli O157:H7 enumeration on brain heart infusion (BHI) agar containing ampicillin and nalidixic acid. To determine the survival of E. coli O157:H7 in catfish holding tank water from two farmers markets, the water was inoculated with 107E. coli O157:H7 CFU/ml. E. coli O157:H7 were detected by direct plating for 33 and 69 d in pond and holding tank water, respectively. A rapid decrease of the pathogen was observed in the first 2 weeks to reach 2 log CFU/ml. When E. coli O157:H7 was not recovered by direct plating, the pathogen was isolated by enrichment in TSB for approximately another 30 d from pond and holding tank water. The populations of E. coli O157:H7 found in the internal organs and skin scrape were 5.5 log and 2.5 log CFU/ml, respectively. E. coli O157:H7 from internal organs and water were recovered for at least 12 d. Results suggest that E. coli O157:H7 can survive in channel catfish pond and holding tank water and channel catfish may become a potential carrier of the pathogen.  相似文献   

16.
A multiplex polymerase chain reaction (PCR) procedure based on fliCh7 and rfbE genes was developed for the detection of Escherichia coli O157:H7 in raw pork meat and ready-to-eat (RTE) meat products. Two different DNA extraction procedures were evaluated for application on meat products. MasterPure™ DNA Purification kit in combination with immunomagnetic separation was found to be the best method in a meat system. The optimized PCR included an enrichment step in brilliant green bile 2% broth at 37 °C. This method was applied to artificially inoculated meat and RTE meat products with different concentrations of E. coli O157:H7. The results indicate that the PCR assay developed could sensitively and specifically detect E. coli O157:H7 in raw pork meat and RTE meat products in approximately 10 h, including a 6 h enrichment step. Thus, this method could be proposed for screening E. coli O157:H7 in raw pork and RTE meat products.  相似文献   

17.
The aim of this study was to determine the total phenolic contents and antibacterial effects of grape pomace extracts (cultivars Emir and Kalecik karasi) against 14 bacteria, and the effects of the extracts on the growth and survival of two of the bacteria during storage. The total phenolic contents of grape pomace of Emir and Kalecik karasi cultivars extracted with acetone/water/acetic acid (90:9.5:0.5) were 68.77 and 96.25 mg GAE g?1, respectively. The agar well diffusion method was used to test the antibacterial activity of the extracts at 1, 2.5, 5, 10 and 20% (w/v) concentrations in methanol on spoilage and pathogenic bacteria including Aeromonas hydrophila, Bacillus cereus, Enterobacter aerogenes, Enterococcus faecalis, Escherichia coli, Escherichia coli O157:H7. Mycobacterium smegmatis, Proteus vulgaris, Pseudomonas aeruginosa, Pseudomonas fluorescens, Salmonella enteritidis, Salmonella typhimurium, Staphylococcus aureus and Yersinia enterocolitica. All the bacteria tested were inhibited by extract concentrations of 2.5, 5, 10 and 20%, except for Y enterocolitica which was not inhibited by the 2.5% concentration. However, pomace extracts at 1% concentration had no antibacterial activity against some of the bacteria. According to the agar well diffusion method, E coli O157:H7 was the most sensitive of the bacteria. Generally, using the serial dilution method, while the extracts at 0.5% concentration had bacteriostatic activities on E coli O157:H7 and S aureus, the extracts appeared to have bactericidal effects at 1 and 2.5% concentrations. In accordance with this method, S aureus was more sensitive than E coli O157:H7 to the extracts. Copyright © 2004 Society of Chemical Industry  相似文献   

18.
A pilot survey for the pathogens Salmonella and Escherichia coli O157:H7, and E. coli biotype 1 was conducted on 100 New Zealand-produced (domestic) pig carcasses and 110 imported pig meat samples over an 8-month period to assess the likelihood of introduction of novel pathogen strains into New Zealand (NZ), and as a guide for development of a domestic pork National Microbiological Database programme. Salmonella was not isolated from domestic pig carcasses or from pig meat imported from Canada and the USA. The prevalence of Salmonella in imported pig meat was 3.6% (95% CI 1.0–9.0) with positive samples detected from Australian pig meat. The prevalence of E. coli O157:H7 on domestic pig carcasses was 1% (95% CI 0.03–5.4) while the overall prevalence of E. coli O157:H7 in imported pig meat was 1.8% (95% CI 0.2–6.4), detected mainly from Australian but not from Canadian or US pork. All except three samples have an E. coli biotype 1 count of <100 CFU cm−2 or g−1, indicating good hygiene quality of domestic and imported pig meat. The results demonstrated that importation of uncooked pig meat is a potential route for the introduction of new clones of Salmonella and E. coli O157:H7 into New Zealand.  相似文献   

19.
Destruction of Escherichia coli O157:H7 in apple cider treated with fumaric acid and sodium benzoate (0.15% and 0.05% w/v, respectively) was determined under pH and storage temperatures that commonly occur in apple cider. At 5°C storage, while destruction of E. coli O157:H7 in the presence of preservatives increased with time, there was little decline in E. coli O157:H7 populations in the absence of the preservatives. Increasing storage temperatures to 15°C and 25°C significantly increased the rate of destruction of E. coli O157:H7 in cider with the preservatives (P < 0.05). Increasing the pH of cider (from 3.2 to 4.7) decreased the rate of destruction of E. coli O157:H7.  相似文献   

20.
Spray washing is a common sanitizing method for the fresh produce industry. The purpose of this research was to investigate the antimicrobial effect of spraying slightly acidic electrolyzed water (SAEW) and a combination of ozonated water with ultraviolet (UV) in reducing Escherichia coli O157:H7 on romaine and iceberg lettuces. Both romaine and iceberg lettuces were spot inoculated with 100 μL of a 3 strain mixture of E. coli O157:H7 to achieve an inoculum of 6 log CFU/g on lettuce. A strong antimicrobial effect was observed for the UV‐ozonated water combination, which reduced the population of E. coli by 5 log CFU/g of E. coli O157:H7 on both lettuces. SAEW achieved about 5 log CFU/g reductions in the bacterial counts on romaine lettuce. However, less than 2.5 log CFU/g in the population of E. coli O157:H7 was reduced on iceberg lettuce. The difference may be due to bacteria aggregation near and within stomata for iceberg lettuce but not for romaine lettuce. The UV light treatment may stimulate the opening of the stomata for the UV‐ozonated water treatment and hence achieve better bacterial inactivation than the SAEW treatment for iceberg lettuce. Our results demonstrated that the combined treatment of SAEW and UV‐ozonated water in the spray washing process could more effectively reduce E. coli O157:H7 on lettuce, which in turn may help reduce incidences of E. coli O157:H7 outbreaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号