首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Kefir is a probiotic dairy product containing multiple species of lactic acid bacteria, acetic acid bacteria, and yeast, with varying microbial composition depending on geographical origin. In the present study, we characterized the acetic acid bacterial population in Korean kefir by next-generation sequencing-based community analysis and isolated a novel acetic acid bacterial strain, Acetobacter fabarum DH1801. To evaluate its potential application in the food industry, the antimicrobial activity of A. fabarum DH1801 against seven foodborne pathogens (Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Cronobacter sakazakii, Salmonella Enteritidis, enterotoxigenic Escherichia coli, and Shigella flexneri) was analyzed by growth curve analysis. Remarkably, the culture filtrate of the novel isolate inhibited the growth of all seven pathogenic bacteria in a dose-dependent manner, which was superior to acetic acid solution of same pH value. Our findings suggest that the A. fabarum DH1801 strain forms a protective barrier during kefir fermentation against contamination by foodborne pathogens.  相似文献   

2.
ABSTRACT: Inactivation of Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes in iceberg lettuce by aqueous chlorine dioxide (ClO2) treatment was evaluated. Iceberg lettuce samples were inoculated with approximately 7 log CFU/g of E. coli O157:H7, S. typhimurium, and L. monocytogenes. Iceberg lettuce samples were then treated with 0, 5, 10, or 50 ppm ClO2 solution and stored at 4 °C. Aqueous ClO2 treatment significantly decreased the populations of pathogenic bacteria on shredded lettuce (P < 0.05). In particular, 50 ppm ClO2 treatment reduced E. coli O157:H7, S. typhimurium, and L. monocytogenes by 1.44, 1.95, and 1.20 log CFU/g, respectively. The D10‐values of E. coli O157:H7, S. typhimurium, and L. monocytogenes in shredded lettuce were 11, 26, and 42 ppm, respectively. The effect of aqueous ClO2 treatment on the growth of pathogenic bacteria during storage was evaluated, and a decrease in the population size of these pathogenic bacteria was observed. Additionally, aqueous ClO2 treatment did not affect the color of lettuce during storage. These results suggest that aqueous ClO2 treatment can be used to improve the microbial safety of shredded lettuce during storage.  相似文献   

3.
The effects of two non thermal disinfection processes, Ultraviolet light (UV 254 nm) and Ultrasound (US) on the inactivation of bacteria and color in two freshly cut produces (lettuce and strawberry) were investigated. The main scope of this work was to study the efficacy of UV and US on the decontamination of inoculated lettuce and strawberries with a cocktail of four bacteria, Escherichia coli, Listeria innocua, Salmonella Enteritidis and Staphylococcus aureus. Treatment of lettuce with UV reduced significantly the population of E. coli, L. innocua, S. Enteritidis and S. aureus by 1.75, 1.27, 1.39 and 1.21 log CFU/g, respectively. Furthermore, more than a 2-log CFU/g reduction of E. coli and S. Enteritidis was achieved with US. In strawberries, UV treatment reduced bacteria only by 1–1.4 log CFU/g. The maximum reductions of microorganisms, observed in strawberries after treatment with US, were 3.04, 2.41, 5.52 and 6.12 log CFU/g for E. coli, S. aureus, S. Enteritidis and L. innocua, respectively. Treatment with UV and US, for time periods (up to 45 min) did not significantly (p > 0.05) change the color of lettuce or strawberry. Treatment with UV and US reduced the numbers of selected inoculated bacteria on lettuce and strawberries, which could be good alternatives to other traditional and commonly used technologies such as chlorine and hydrogen peroxide solutions for fresh produce industry. These results suggest that UV and US might be promising, non-thermal and environmental friendly disinfection technologies for freshly cut produce.  相似文献   

4.
Numerous Escherichia coli O157:H7 outbreaks have been linked to consumption of fresh lettuce. The development of effective and easily implemented wash treatment could reduce such incidents. The purpose of this study was to evaluate the addition of food-grade detergents to sanitizer solutions for inactivation of E. coli O157:H7 on Romaine lettuce. Freshly-cut leaves of Romaine lettuce were dip-inoculated to achieve a final cell concentration of 7.8 ± 0.2 log CFU/g, air-dried for 2 h, and stored overnight at 4 °C. Leaves were then washed for 2 min in an experimental short chain fatty acid formulation (SCFA) or in one of the following solutions with or without 0.2% dodecylbenzenesulfonic acid or 0.2% sodium 2-ethyl hexyl sulfate: 1) deionized water; 2) 100 ppm chlorine dioxide; 3) 100 ppm chlorine; and 4) 200 ppm chlorine. Following wash treatment, samples were blended in neutralizing buffer (1:3) and surface plated on the selective media CT-SMAC. The efficacy of wash treatments, with or without the detergents, in inactivating E. coli O157:H7 cells on lettuce leaves were not significantly different. The most effective wash solution was SCFA, which was capable of reducing E. coli O157:H7 populations by more than 5 log CFU/g. The rest of the wash treatments resulted in a population reduction of less than 1 log CFU/g. The effectiveness of SCFA surpasses that of other sanitizer treatments tested in this study and requires further research to optimize treatments to preserve lettuce quality. Conventional detergents did not enhance the efficacy of any of the wash treatments tested during this study.  相似文献   

5.
Salmonella spp. is one of the main lettuce pathogens and should be inactivated during the disinfection of these vegetables before consumption. In minimally processed vegetable industries, residues of organic matter can prevent the inactivation of this pathogen by disinfectants. The objective of the present work was to evaluate the inactivation of Salmonella isolated from organic lettuce to sodium hypochlorite (25 and 50 ppm) and citric acid (0.5 and 1%) in washing water added with lettuce residues. To do so, a washing water with lettuce residues was elaborated, and Salmonella was added in the order of 106 CFU/ml. Thereafter, each sanitizer was added separately to evaluate its effect on reducing Salmonella counts. After 1, 2, 3, 4, 5, 10, and 15 min of contact with the sanitizers, serial dilutions using neutralizer (0.5% sodium thiosulfate) were performed and each dilution was sown in Xylose-Lysine-Desoxycholate medium. Total aerobic mesophilic counts of wash water with lettuce residues before testing (without Salmonella) and after 15 min of exposure to each sanitizer (with Salmonella) were also performed. In addition, the free chlorine still present in the samples after the contact of sodium hypochlorite with lettuce residues for 15 min. The results demonstrated that 50 and 25 ppm sodium hypochlorite could reduce 6 log CFU/ml of Salmonella in 1 and 3 min of contact, respectively, while 0.5 and 1% citric acid was able to reduce 1.26 and 1.74 log CFU/ml respectively from the same microorganism within 15 min of contact. The total aerobic mesophilic counts of the wash water before being tested were, on average, 1.5 log CFU/ml. After addition of Salmonella, with 15 min of contact with the sanitizer, the results of total counts showed the same magnitude as the Salmonella counts. Organic matter may have reacted with the free chlorine present, reducing chlorine concentrations, since values of 30.4 ppm were observed when the initial concentration should be 50 and 17.1 ppm when the initial concentration should be 25 ppm. Based on the results, sodium hypochlorite demonstrated a greater microbial reduction capacity in wash water with lettuce residues, indicating that it is more appropriate to avoid cross-contamination between batches during sanitation of lettuce in washing tanks.  相似文献   

6.
Abstract: The objective of this study was to evaluate the efficacy of slightly acidic electrolyzed (SAEO) water in killing or removing Escherichia coli O157:H7 on iceberg lettuce and tomatoes by washing and chilling treatment simulating protocols used in food service kitchens. Whole lettuce leaves and tomatoes were spot‐inoculated with 100 μL of a mixture of 5 strains of E. coli O157:H7. Washing lettuce with SAEO water for 15 s reduced the pathogen by 1.4 to 1.6 log CFU/leaf, but the treatments did not completely inactivate the pathogen in the wash solution. Increasing the washing time to 30 s increased the reductions to 1.7 to 2.3 log CFU/leaf. Sequential washing in SAEO water for 15 s and then chilling in SAEO water for 15 min also increased the reductions to 2.0 to 2.4 log CFU/leaf, and no cell survived in chilling solution after treatment. Washing tomatoes with SAEO water for 8 s reduced E. coli O157:H7 by 5.4 to 6.3 log CFU/tomato. The reductions were increased to 6.6 to 7.6 log CFU/tomato by increasing the washing time to 15 s. Results suggested that application of SAEO water to wash and chill lettuce and tomatoes in food service kitchens could minimize cross‐contamination and reduce the risk of E. coli O157:H7 present on the produce. Practical Application: SAEO water is equally or slightly better than acidic electrolyzed (AEO) water for inactivation of bacteria on lettuce and tomato surfaces. In addition, SAEO water may have the advantages over AEO water on its stability, no chlorine smell, and low corrosiveness. Therefore, SAEO water may have potential for produce wash to enhance food safety.  相似文献   

7.
Cronobacter spp., formerly Enterobacter sakazakii, are considered emerging opportunistic pathogens and the etiological agent of life-threatening bacterial infections in infants. In the present study, C. sakazakii BCRC 13988 was first subjected to sub-lethal heat treatment at 47 °C for 15 min. Survival rates of the heat-shocked and non-shocked C. sakazakii cells in phosphate buffer solution (PBS, pH 4.0) containing organic acids (e.g. acetic, propionic, citric, lactic or tartaric acid), simulated gastric juice (pH 2.0-4.0), and bile solution (0.5 and 2.0%) were examined. Results revealed that sub-lethal heat treatment enhanced the test organism's tolerance to organic acids, although the extent of increased acid tolerance varied with the organic acid examined. Compared with the control cells, heat-shocked C. sakazakii cells after 120-min of exposure, exhibited the largest increase in tolerance in the lactic acid-containing PBS. Furthermore, although heat shock did not affect the behavior of C. sakazakii in bile solution, it increased the test organism's survival when exposed to simulated gastric juice with a pH of 3.0-4.0.  相似文献   

8.
BACKGROUND: The comparative effects of organic (citric and lactic) acids, ozone and chlorine on the microbiological population and quality parameters of fresh-cut lettuce during storage were evaluated. RESULTS: Dipping of lettuce in 100 mg L−1 chlorine solution reduced the numbers of mesophilic and psychrotrophic bacteria and Enterobacteriaceae by 1.7, 2.0 and 1.6 log10 colony-forming units (CFU) g−1 respectively. Treatment of lettuce with citric (5 g L−1) and lactic (5 mL L−1) acid solutions and ozonated water (4 mg L−1) reduced the populations of mesophilic and psychrotrophic bacteria by 1.7 and 1.5 log10 CFU g−1 respectively. Organic acid dippings resulted in lower mesophilic and psychrotrophic counts than ozonated water and chlorine dippings during 12 days of storage. Lactic acid dipping effectively reduced (by 2.2 log10 CFU g−1) and maintained low populations of Enterobacteriaceae on lettuce for the first 6 days of storage. No significant (P > 0.05) changes were observed in the texture and moisture content of lettuce samples dipped in chlorine, organic acids and ozonated water during storage. Colour, β-carotene and vitamin C values of fresh-cut iceberg lettuce did not change significantly (P > 0.05) until day 8. CONCLUSION: Lactic and citric acid and ozonated water dippings could be alternative treatments to chlorine dipping to prolong the shelf life of fresh-cut iceberg lettuce. Copyright © 2007 Society of Chemical Industry  相似文献   

9.
Lettuce is often involved in foodborne outbreaks caused by pathogenic Escherichia coli. Current control strategies have often proved ineffective to ensure safe food production. For that reason, the present study compared the efficacy of tannin extracts and chlorine treatments on the reduction of E. coli ATCC 25922 adhered to lettuce leaves. E. coli was inoculated artificially on leaf surfaces of fresh crisp lettuce. Effectiveness of water, chlorine (200 mg/L), and three commercial available tannin extracts from Acacia mearnsii De Wild. (tannin AQ (2 %, w/v), tannin SG (1 %, v/v) and tannin SM (1 %, v/v)) treatments was evaluated using the viable plate count method and scanning electron microscopy (SEM). SEM results revealed that bacterial cells are attached as individual cells and in clusters to the leaf surface after 2 h of incubation. Biofilm formation was observed after 24 h of incubation. The tannin SM treatment was able to reduce counts in approximately 2 log CFU/cm2 on leaf segments. However, treatment was less effective in the reduction of E. coli counts after 24 h of incubation when compared to 2 h incubation of the same extract. The results suggest that the tannin SM extract diminishes E. coli counts adhered to and under biofilm formation on lettuce leaves and its effect is similar to the use of chlorine solutions.  相似文献   

10.
ABSTRACT: This study was conducted to investigate the growth of microorganisms, including pathogenic bacteria such as Cronobacter sakazakii and Bacillus cereus, in Sunsik beverages made of water, milk, soymilk, or honey-water during storage at room temperature. Prepared Sunsik beverages were stored at room temperature and the growth of total aerobic counts, Escherichia coli/coliforms, and yeast and mold were measured. Also, samples inoculated with a cocktail of C. sakazakii or B. cereus spores were stored at room temperature and their growths were determined during storage. Populations of total aerobic counts and coliforms significantly increased with increasing storage time at room temperature, which resulted in higher than 8 log and 7 log after 24 h in all samples except for the honey-water sample, respectively. Levels of total aerobic counts and coliforms were significantly lower in the honey-water sample than in the other samples after 6 and 9 h of storage, respectively. Initial populations of C. sakazakii and B. cereus ranged from 0 to 1 log CFU/mL, respectively, and these populations significantly increased with increasing storage time at room temperature. Therefore, populations of C. sakazakii and B. cereus were approximately 7 to 8 log CFU/mL after 24 h of storage. However, after 12 and 9 h of storage, there were significant differences in levels of C. sakazakii and B. cereus between the honey-water sample and the other samples, respectively. Based on these results, the addition of honey can inhibit microbial growth in Sunsik beverages; however, the best way to avoid pathogen infection would be to consume Sunsik beverages as soon as possible after preparation.  相似文献   

11.
This study was conducted to determine the resistance of acid-shocked Cronobacter sakazakii to environmental stresses. C. sakazakii pre-exposed to various pH levels was treated with acid stress (pH 3.06), heat stress (55°C), and organic acid stress, respectively. Overall, higher D-values were obtained in samples pre-exposed to acidic pH conditions (pH 3.06, 4.00, and 5.02) compared to a control (pH 7.20) when the samples were subsequently stressed. For 0.1 M acetic acid, the D-values of nonadapted C. sakazakii ATCC 29004 and ATCC 29544 were 19.69 and 15.49 h, respectively, whereas the D-values of acid-shocked C. sakazakii ATCC 29004 and ATCC 29544 by pre-exposure to pH 4.0 were 34.59 and 24.25 h, respectively. Acid adaptation of C. sakazakii by preexposure to acidic pH can enhance the resistance of cells against subsequent environmental stresses such as acidic pH, heat, and organic acids.  相似文献   

12.
The effects of shredding, chlorine treatment and modified atmosphere packaging on survival and growth of Listeria monocytogenes, mesophilic aerobes, psychrotrophs and yeasts and molds on lettuce stored at 5°C and 10°C were determined. With the exception of shredded lettuce which had not been chlorine treated, no significant changes in populations of L. monocytogenes were detected during the first 8 days of incubation at 5°C; significant increases occurred between 8 and 15 days. Significant increases occurred within 3 days when lettuce was stored at 10°C; after 10 days, populations reached 108-109 CFU/g. Chlorine treatment, modified atmosphere (3% O2, 97% N2) and shredding did not influence growth of L. monocytogenes. It was concluded that L. monocytogenes is capable of growing on lettuce subjected to commonly used packaging and distribution procedures used in the food industry.  相似文献   

13.
Biofilm formation is a growing concern in the food industry. Escherichia coli O157:H7 is one of the most important foodborne pathogens that can persists in food and food‐related environments and subsequently produce biofilms. The efficacy of bacteriophage BPECO 19 was evaluated against three E. coli O157:H7 strains in biofilms. Biofilms of the three E. coli O157:H7 strains were grown on abiotic (stainless steel, rubber, and minimum biofilm eradication concentration [MBECTM] device) and biotic (lettuce) surfaces at different temperatures. The effectiveness of bacteriophage BPECO 19 in reducing preformed biofilms on these surfaces was further evaluated by treating the surfaces with a phage suspension (108 PFU/mL) for 2 h. The results indicated that the phage treatment significantly reduced (P  < 0.05) the number of adhered cells in all the surfaces. Following phage treatment, the viability of adhered cells was reduced by ≥3 log CFU/cm2, 2.4 log CFU/cm2, and 3.1 log CFU/peg in biofilms grown on stainless steel, rubber, and the MBECTM device, respectively. Likewise, the phage treatment reduced cell viability by ≥2 log CFU/cm2 in biofilms grown on lettuce. Overall, these results suggested that bacteriophages such as BPECO 19 could be effective in reducing the viability of biofilm‐adhered cells.  相似文献   

14.
The effect of decontamination methods on fresh‐cut vegetable washing waters was evaluated. NEW, ClO2, organic acid‐based product FPW, and UV‐C were tested with and without an interfering carrot juice of 1% (IS), on Yersinia enterocolitica and Yersinia pseudotuberculosis, Escherichia coli, and yeast Candida lambica. The use of ClO2 (50 ppm active chlorine) resulted in >4 log reduction of Y. enterocolitica, Y. pseudotuberculosis, E. coli and >3 log reduction of C. lambica. The antibacterial effect of NEW was less effective in the presence of IS when compared with ClO2. The inactivation of C. lambica by FPW reached a maximum of 2.8 log cfu/mL (concentration 0.125%), but the antimicrobial effect was delayed by the IS. The effect of FPW on E. coli was significantly reduced by 1% IS. The inactivation of E. coli and C. lambica with UV‐C IS decreased the inactivation and lengthened its time. Filtration improved the effect of UV‐C inactivation.

Practical applications

When chemical decontamination methods were used in fresh‐cut vegetable processing, the presence of organic matter in process water increased the reaction times and the need for higher concentrations of the chemical decontamination and the time of physical decontamination. Yersinia required longer inactivation times than E. coli. When UV‐C is used for decontamination of process waters, waters should be filtered to enhance the disinfection efficacy.  相似文献   

15.
Optimal temperature, lower temperature limit, extent, and rate of histamine production in a tuna fish infusion broth (TFIB) varied for the strains of Proteus morganii, Klebsiella pneumoniae, Hafnia alvei, Citrobacter freundii, and Escherichia coli studied. P. morganii and K. pneumoniae produced large quantities of histamine in a relatively short incubation period (<24 hr) at 15°C, 30°C, and 37°C; production was fastest at 37°C. H. alvei, C. freundii, and E. coli produced toxicologically significant levels of histamine (>2500 nmoles/ml) only at 30°C and 37°C on prolonged incubation (≥48 hr). At 72 hr of incubation, optimal temperature for histamine production was 37°C for E. coli and C freundii; 30°C for P. morganii strain 110SC2, K. pneumoniae, and H. alvei; and 15°C for P. morganii strain JM. The lower temperature limits for production of toxicologically significant levels of histamine in TFIB were 7°C for K. pneumoniae; 15°C for both P. morganii strains; and 30°C for H. alvei, C. freundii, and E. coli.  相似文献   

16.
The effects of peroxyacetic acid (POAA), acidic electrolyzed water (AEW) and chlorine on inactivation of Escherichia coli O157:H7 on fresh‐cut apples and cantaloupe rinds were investigated. Apple cylinders were dip‐inoculated with E. coli O157:H7 and treated with sterilized water (control), chlorine, AEW or POAA for up to 8 min. Cantaloupe cylinders were spot‐inoculated with E. coli O157:H7 to the rind and treated with sterilized water, AEW or POAA for up to 15 min. All sanitizer treatments showed a significantly (P < 0.05) higher inactivation than the control. The residual counts of E. coli O157:H7 on both fruits exhibited a dual‐phasic reduction behavior, with a fast inactivation (D values: 0.8–5.0 min) in the first minute (phase I) of treatments followed by a much slower inactivation (D values: 14.6–59.8 min) in the remaining time (phase II). The dual‐phasic inactivation seems to be related to fruit surface topography that determines the bacterial distribution.  相似文献   

17.
The objective of this work was to compare organoleptic and microbiological spoilage with the survival of Escherichia coli 0157:H7 in modified atmosphere (MA) stored shredded lettuce. The rates of growth of E coli 0157:H7, increase in aerobic plate counts (APC g−1), and rates of visual spoilage of shredded lettuce held under air or MA at 13 and 22°C were compared. Samples were inoculated with nalidixic acid-resistant E coli 0157:H7 (ATCC 35150) and placed in a chamber which was continuously flushed with gas mixtures of 0/10/90, 3/0/97, 5/30/65, 20/0/80 (O2/CO2/N2, v/v) and held at 13 or 22°C. APC growth was inhibited in 5/30/65 (O2/CO2/N2) at 13°C compared to all other atmospheres which were not significantly different from each other. The growth rates for both E coli 0157:H7 and APC were greatest in air at 22°C. Carbon dioxide concentration had no significant effect on the growth of E coli 0157:H7 at either temperature. The shelf-life of shredded lettuce, as judged by appearance, was extended in atmospheres containing 30% CO2 by approximately 300% compared to air. The APC were similar at the time when the shredded lettuce samples were judged unacceptable regardless of shelf-life. However, the extended shelf-life provided by the MA allowed E coli 0157:H7 to grow to higher numbers compared to air-held shredded lettuce.  相似文献   

18.
Spray washing is a common sanitizing method for the fresh produce industry. The purpose of this research was to investigate the antimicrobial effect of spraying slightly acidic electrolyzed water (SAEW) and a combination of ozonated water with ultraviolet (UV) in reducing Escherichia coli O157:H7 on romaine and iceberg lettuces. Both romaine and iceberg lettuces were spot inoculated with 100 μL of a 3 strain mixture of E. coli O157:H7 to achieve an inoculum of 6 log CFU/g on lettuce. A strong antimicrobial effect was observed for the UV‐ozonated water combination, which reduced the population of E. coli by 5 log CFU/g of E. coli O157:H7 on both lettuces. SAEW achieved about 5 log CFU/g reductions in the bacterial counts on romaine lettuce. However, less than 2.5 log CFU/g in the population of E. coli O157:H7 was reduced on iceberg lettuce. The difference may be due to bacteria aggregation near and within stomata for iceberg lettuce but not for romaine lettuce. The UV light treatment may stimulate the opening of the stomata for the UV‐ozonated water treatment and hence achieve better bacterial inactivation than the SAEW treatment for iceberg lettuce. Our results demonstrated that the combined treatment of SAEW and UV‐ozonated water in the spray washing process could more effectively reduce E. coli O157:H7 on lettuce, which in turn may help reduce incidences of E. coli O157:H7 outbreaks.  相似文献   

19.
Yunjung Kim  Minhee Kim  Kyung Bin Song 《LWT》2009,42(10):1654-1658
Effect of fumaric acid, chlorine dioxide (ClO2), and UV-C treatment was examined on the inactivation of microorganisms in alfalfa and clover sprouts. Clover sprouts were irradiated with UV-C light (1–10 kJ/m2), and the treatment decreased the population of total aerobic bacteria by 1.03–1.45 log CFU/g. Clover sprouts inoculated with pathogenic bacteria were treated with various concentration of fumaric acid, and 0.5 g/100 ml fumaric acid treatment was the most effective. In addition, the combined treatment of fumaric acid (0.5 g/100 ml)/UV-C (1 kJ/m2) reduced the populations of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes inoculated on clover sprouts by 3.02, 2.88, and 2.35 log CFU/g. Alfalfa sprouts were treated with ClO2, fumaric acid, and the combination of fumaric acid/ClO2. The combined treatment was the most effective, and it reduced the total aerobic bacteria by 3.18 log CFU/g as well as the initial populations of E. coli O157:H7, S. typhimurium, and L. monocytogenes inoculated on alfalfa sprouts by 4.06, 3.57, and 3.69 log CFU/g. These results suggest that the combined treatment of fumaric acid with UV-C or ClO2 can be useful for improving the microbial safety of alfalfa and clover sprouts.  相似文献   

20.
H. Yang    Y. Cheng    B.L. Swem    Y. Li 《Journal of food science》2003,68(3):1008-1012
Fresh‐cut lettuce inoculated with Salmonella enterica serovar Typhimurium and Escherichia coli O157:H7 was treated using cetylpyridinium chlorine (CPC) solution in a laboratory‐scale immersion spray system. With 0.7 kg/cm2 spray pressure and 1.5‐min spray time (ST), both bacteria were significantly reduced (P < 0.05) in 0.1% to 0.3% CPC spray treatments, compared with water spray controls. At the same ST, increasing spray pressure from 0.7 to 2.1 kg/cm2 further reduced bacteria by 0.5 to 1.5 log colony‐forming units (CFU)/g. The 0.2% and 0.3% CPC treatments resulted in the greatest reduction of S. serovar Typhimurium and E. coli O157:H7, respectively. Similar bacterial reduction could be achieved using shorter ST with extended post‐spray exposure time. No color change on the lettuce was observed after CPC treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号