首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The physicochemical and scanning electron micrograph characteristics of Radix Cynanchi bungei (RCb) starch were investigated. RCb starch presented an apparent amylose content of 20.1%, less than that of potato starch (23.6%), with a granule size ranging from 5 to 15 μm with round, spherical and polygonal shapes and B‐type X‐ray diffraction pattern. The RVA pasting properties of RCb starch were similar to those of potato starch, with pasting temperature of 60.8°C, lower than that of potato starch (64.3°C). The gelatinization parameters of RCb starch were found to be 55.9°C (To), 60.0°C (Tp), 66.6°C (TC) and 13.2 J/g (ΔH) while those of potato starch were 58.9°C, 63.5°C, 68.6°C and 13.2 J/g. Both RCb and potato starch pastes behaved as high shear‐thinning liquids. RCb starch pastes had lower apparent viscosity than potato starch pastes at the same shear rate.  相似文献   

2.
The effect of rice variety and starch isolation method on the pasting and rheological properties of rice starches was evaluated. One waxy and three non-waxy rice varieties from California with a range of amylose contents of 1.6–26.5% and four methods of isolation were evaluated. A rotational rheometer (RR) was used to measure the pasting and rheological properties of starch dispersions (8% w/w). The RR pasting curves had similar shapes to those from a rapid visco-analyzer (RVA). The four treatments used for isolating starch were a protease, NaOH (0.1% and 0.4%), or sodium dodecyl sulfate (SDS) (1.0%). The NaOH (0.4%) and SDS treatments were found to reduce the peak pasting temperatures of the non-waxy starches as compared with the protease and NaOH (0.1%) treatments. The same trend of the treatments was found with the elastic moduli, low shear viscosities, and yield stresses of the non-waxy starch pastes measured at 65 °C, immediately after pasting. The elastic moduli of the waxy starch pastes appeared to be least affected by method of starch isolation, but the low shear viscosity and yield stress of the protease starch paste was significantly higher than the paste from the other three treatments. Overall, the method of rice starch isolation was found to affect the gelatinization and rheological characteristics of hot rice starch paste.  相似文献   

3.
The changes in swelling power and pasting properties of suspensions of starch blends were studied in dependence on starch composition and at various isothermal temperatures (Tiso). Samples were prepared by mixing rice starches from Kaoshiung Sen 7 (KSS7, a high‐amylose‐content variety) and Taichung waxy 70 (TCW70, a waxy variety). Generally, mixing these starches at a comparable ratio caused significant decrements in overall swelling power, onset temperature of gelatinization or viscosity rise, and final viscosity of hot pastes after 30 min of isothermal stirring. Notable increases in the peak and conclusion temperatures of gelatinization and in the peak viscosity of the pastes were also observed. Generally, all viscosity parameters of the blends showed two linear dependencies on the starch composition, the graphs intersecting at a critical starch composition depending on the parameters concerned. The onset temperature of viscosity increase was related to the volume fraction of swollen granules when they were just closely packed in suspension. The volume fraction of KSS granules was smaller than that of TCW70. In addition, the rate of viscosity increase and the peak viscosity of the starch suspensions could be well described in terms of the swelling power (Q) when Q ≤ ∼27, and depending on the Tiso examined. From the photomicrographs of starch suspensions, the extensive shear‐induced disintegration of TCW70 granules in the co‐existence of rigid KSS7 granules was evident and in turn responsible for the reduced final viscosities of the hot pastes obtained from starch blends.  相似文献   

4.
Morphological, viscoelastic, hydration, pasting, and thermal properties of starches separated from 10 different rice cultivars were investigated. Upon gelatinization, the G′ values of the rice starch pastes ranged from 37.4 to 2057 Pa at 25 °C, and remarkably, the magnitude depended on the starch varieties. The rheological behavior during gelatinization upon heating brought out differences in onset in G′ and degree of steepness. The cultivar with high amylose content (Goami) showed the lowest critical strain (γc), whereas the cultivars with low amylose content (Boseokchal and Shinseonchal) possessed the highest γc. The amylose content in rice starches affected their pasting properties; the sample possessing the highest amylose content showed the highest final viscosity and setback value, whereas waxy starch samples displayed low final viscosity and setback value. The onset gelatinization temperatures of the starches from 10 rice cultivars ranged between 57.9 and 64.4 °C. The amylose content was fairly correlated to hydration and pasting properties of rice starches but did not correlate well with viscoelastic and thermal characteristics. The combined analysis of hydration, pasting, viscoelastic, and thermal data of the rice starches is useful in fully understanding their behavior and in addressing the processability for food applications.  相似文献   

5.
Starch was isolated from Barnard Red (a South African sorghum variety) and a Chinese sorghum sample. Starch and flour properties (gelatinization, pasting, and gel texture) were compared with those of a standard corn starch. Significant findings were: 1. Barnard Red starch had lower gelatinization temperature than either Chinese sorghum or corn starch; 2. starch gels of corn and Barnard Red were of similar hardness; 3. Barnard Red starch pastes had very high viscosity compared to corn and Chinese sorghum; 4. Barnard Red starch shear‐thinned more than its flour paste in the absence of amylase activity.  相似文献   

6.
Phosphorylation of rice starch and its effects on the physiochemical properties of the starch were investigated. Phosphorylation was conducted using the oven heating method by heating mixtures of rice starch and monosodium dihydrogenphosphate at 120‐150°C for 0.5‐2 h, and the pasting, flow and rheological properties of the resulting starch phosphates were analyzed. Phosphorylation with substitution degrees of up to 0.12 was achieved by raising the reaction temperature to 140°C, but further increase in the temperature to 150°C caused a marked reduction in the degree of substitution. Phosphorylation resulted in significant declines in pasting temperature and setback, but increases in peak viscosity and breakdown. Suspensions of rice native starch and starch phosphates were shown to be non‐Newtonian, pseudoplastic fluids, exhibiting typical shear thinning. They also exhibited yield stress, the magnitude of which increased with the degree of phosphate substitution. Dynamic testing showed that phosphorylation resulted in a decrease in the temperature at which storage and loss moduli (G′ and G″) reached a peak during heating and a reduction in G′ during cooling. These results appeared to indicate that phosphorylation improved the shear stability of rice starch pastes and enhanced swelling of starch granules, but impeded starch retrogradation.  相似文献   

7.
Corn starch with 15–40% moisture was irradiated at 0.17 or 0.5 W/g for 1 h using the sophisticated Ethos 1600 microwave apparatus that accurately controls temperature and wattage. Temperature of irradiated starch was measured during microwaving. Thermal and pasting properties were studied on dehydrated starch after microwave irradiation. Temperature increases were greatest during the first 10 min for starch at all moisture contents at both microwave power levels. Starch irradiated at 0.17 W/g had a temperature below onset gelatinization temperature (To) after 1 h. Higher temperatures were observed for starch with higher moisture content and microwaved at 0.5 W/g. Compared to native starch, starch with 15–40% moisture had higher To (measured using differential scanning calorimetry) and with 35–40% moisture had higher peak gelatinization temperature and lower enthalpy change of gelatinization. All paste viscosity parameters measured by the Rapid Visco Analyser were reduced and pasting temperature was elevated for starch irradiated at 0.5 W/g compared to native starch.  相似文献   

8.
The steady and dynamic shear rheological properties of hydroxypropylated rice starch pastes (5%, w/w) were evaluated at different molar substitution (MS, 0.030‐0.142). The swelling power (35.5‐52.8 g/g) and solubility (8.19‐10.7%) values of the hydroxyproylated rice starches were higher than those of native rice starch (26.6 g/g and 7.78%) and increased with an increase in MS. The hydroxypropylated starch pastes at 25°C showed a pronounced shear‐thinning behavior (n = 0.33‐0.40) with Casson yield stress (σoc = 15.9‐31.7 Pa). The consistency index (K) and yield stress (σoc) values of the hydroxypropylated starch pastes were lower than those of the native starch, and increased progressively with an increase in MS. The apparent viscosity (ηa,500) obeyed the Arrhenius temperature relationship over the temperature range of 10‐55°C; the activation energies (Ea) of the hydroxypropylated starch pastes were in the range of 14.8‐18.5 kJ/mol, i.e. higher than that (14.1 kJ/mol) of the native starch. Storage (G′) and loss moduli (G′′) of hydroxypropylated starch pastes increased with an increase in MS, while tan δ (G′′/G′) values decreased, indicating that G′ rose more strongly than G′′ with increased MS.  相似文献   

9.
Chemical and physical properties of kiwifruit (Actinidia deliciosa var. ‘Hayward’) starch were studied. Kiwifruit starch granules were compound, irregular or dome‐shaped with diameters predominantly 4–5 µm or 7–9 µm. Kiwifruit starch exhibited B‐type X‐ray diffraction pattern, an apparent amylose content of 43.1% and absolute amylose content of 18.8%. Kiwifruit amylopectins, relative to other starches, had low weight‐average molecular weight (7.4×107), and gyration radius (200 nm). Average amylopectin branch chain‐length was long (DP 28.6). Onset and peak gelatinization temperatures were 68.9°C and 73.0°C, respectively, and gelatinization enthalpy was high (18.5 J/g). Amylose‐lipid thermal transition was observed. Starch retrograded for 7 d at 4°C had a very high peak melting temperature (60.7°C). Peak (250 RVU), final (238 RVU) and setback (94 RVU) viscosity of 8% kiwifruit starch paste was high relative to other starches and pasting temperature (69.7°C) was marginally higher than onset gelatinization temperature. High paste viscosities and low pasting temperature could give kiwifruit starch some advantages over many cereal starches.  相似文献   

10.
Rheological properties of corn starch octenylsuccinate (OSA starch) pastes (5%, w/w), at different 1‐octenylsuccinic anhydride (OSA) contents (0, 1.0, 1.5, 2.0 and 2.5%, w/w) were evaluated in steady and dynamic shear. The OSA starch pastes had high shear‐thinning behaviors and their flow behaviors were described by power law, Casson, and Herschel‐Bulkley models. Magnitudes of consistency index (K, Kh) and yield stress (σoc, σh) increased with the increase in OSA content and the decrease in temperature. Over the temperature range of 10–50°C, the effect of temperature on apparent viscosity (ηa,100) was described by the Arrhenius equation. The activation energy values (Ea = 10.7–13.9 kJ/mol) of OSA starches were lower than that (Ea = 15.9 kJ/mol) of native starch. Dynamic frequency sweep test showed that both storage modulus (G′) and loss modulus (G′′) of OSA starch pastes increased with the increase in OSA content. Dynamic (η*) and steady shear (ηa) viscosities of OSA starch pastes at various OSA contents did not follow the Cox‐Merz superposition rule.  相似文献   

11.
Sugars and hydrocolloids are used in starch-based product formulations during processing for improving the final quality of foods. Effect of sucrose (0–30%) on thermal and pasting properties of 5% w/w tapioca starch (TS) – xanthan gum (Xan) mixtures was investigated using differential scanning calorimeter (DSC), rapid visco-analyser (RVA) and rheometer. Sucrose increased gelatinization temperatures and enthalpies of TS and TS/Xan dispersions. RVA pasting temperatures, peak viscosity, final viscosity, breakdown and setback values of TS/Xan mixtures increased with increasing sucrose concentration (< 0.05). Addition of sucrose in all TS/Xan pastes increased the rate of viscosity breakdown during RVA heating under constant shear and temperature. Setback values of TS/Xan pastes increased with sucrose addition but decreased significantly with increasing Xan content. Xan enhanced thermal stability of steady shear viscosities to TS pastes with and without sucrose. Linear regression from pasting profile revealed a good relationship for predicting final viscosity. These results could facilitate the development of TS-based products with improved thermal and pasting properties.  相似文献   

12.
Thermal alkaline treatment, normally used for corn, was applied to pigeonpea grains. Starch granules were isolated using wet milling and alkaline treatments. Effects of the calcium hydroxide [Ca(OH)2] concentration in the range of 0–1% (w/v) on granule structure, crystalline structure, chemical composition, and physicochemical, thermal, and pasting properties of isolated starch granules were determined. Compared to native samples, thermal alkaline treated samples had higher protein, lipid, calcium, and phosphorus contents, but lower starch and amylose contents. Thermal alkaline treatment increased starch granular size and gelatinization temperatures, but decreased relative crystallinity, gelatinization enthalpy, swelling power, solubility, amylose leaching, and the pasting viscosity. Amylose-lipid complexes were not found in thermal alkaline treated flours. As the Ca(OH)2 concentration increased, the amylose content, relative crystallinity, gelatinization temperature, and enthalpy also increased, but the swelling power, solubility, amylose leaching, and paste viscosity decreased. A higher Ca(OH)2 concentration produced more stable starch granules that resisted re-gelatinization.  相似文献   

13.
The starches separated from thirteen different black gram cultivars were investigated for physicochemical, thermal, morphological and pasting properties. Amylose content, swelling power, solubility and water binding capacity of starches ranged between 30.2–34.6%, 16.0–22.3 g/g, 14.8–17.3% and 73.5–84.5%, respectively. The diameter of starch granules, measured using a laser‐light scattering particle‐size analyzer, varied from 12.8 to 14.3 μm in all black gram starches. The shape of starch granules varied from oval to elliptical. The transition temperatures (To, Tp and Tc) and enthalpy of gelatinization (ΔHgel) determined using differential scanning calorimetry, ranged between 66.1–71.3, 71.0–76.2, 75.9–80.4°C and 6.7–9.4 J/g, respectively. Pasting properties of starches measured using the Rapid Visco Analyser (RVA) also differed significantly. Pasting temperature, peak viscosity, trough, breakdown, final viscosity and setback were between 75.8–80.3°C, 422–514, 180–311, 134–212, 400–439 and 102–151 Rapid Visco Units (RVU), respectively. Turbidity values of gelatinized starch pastes increased during refrigerated storage. The relationships between different properties were also determined using Pearson correlation coefficients. Amylose content showed a positive correlation with swelling power, turbidity and granule diameter. Swelling power showed a negative correlation with solubility and setback. To, Tp and Tc showed positive correlation with turbidity, pasting temperature and were negatively correlated to peak and breakdown viscosity.  相似文献   

14.
Gelatinization properties of navy bean (Phaseolus vulgaris) starch under different combinations of concentration (6, 8, 10 and 12%) and cooking temperature (75, 85 and 95°C) were studied using a rotational viscometer. The torque response due to swelling and/or breakdown of starch granules approached equilibrium after either a gradual increase or a relatively rapid increase to a peak followed by a decline during cooking. For every condition, the difference between the final torque values obtained for the rapid and the slow heating processes was not significant. In general, the viscosity of the paste increased as the starch concentration and/or cooking temperature increased. However, cooking temperature of 75°C did not cause a significant gelatinization or swelling of starch granules in pastes of 6 or 8% concentration. Maximum final viscosity values were obtained at 85°C for all starch concentrations except for a maxium at 95°C for 6%. Thixotropic breakdown was observed at 10 and 12% concentrations during initial shearing at 85 and 95°C. The threshold concentration for singnificant viscosity effects in this study was in the range of about 8 to 10% or 95°C. The calculated activation energy (14.5 Kcal.g−1 mole−1) of navy bean starch gelatinization was similar to values reported for rough rice and rice starches.  相似文献   

15.
The root starch of Cucurbita foetidissima, or buffalo gourd, has physicochemical characteristics intermediate to those of cassava and maize. However, unlike other root starches, buffalo gourd starch pastes retain peak viscosity under application of stress. Nutritional and organoleptic evaluation have shown suitability of this starch for food use. Buffalo gourd starch pastes retrograde when subjected to low temperature storage to a degree similar to that of maize. Stabilization of buffalo gourd starch (DS 0.04, 0.05, 0.06) with propylene oxide protects against the retrogradative response. Rheological examination of hydroxypropylated buffalo gourd starch shows depressed initial pasting temperatures, with increased and sustained viscosity throughout the pasting cycle.  相似文献   

16.
17.
The effects of different cooking conditions and concentrations on the freeze-thaw stability of hydroxypropyl potato starch (molar substitution 0·125) paste were investigated by dynamic rheological measurements and syneresis determination. The cooking conditions of the starch were chosen by taking the starch pastes at peak consistency (SP/Peak), at half breakdown consistency (SP/HB), after being held at 95°C for 15 min (SP/95°C) and after the whole pasting cycle (SP/25°C) in the Brabender Amylograph. The concentration effect was studied with the starch pastes after a whole pasting cycle at 35, 50 and 65 g kg?1. Depending on cooking conditions and concentration, the rheological responses in changes of complex modulus (G*) and phase angle () of the starch pastes, with regard to the number of freeze-thaw cycles, differed considerably. This indicated that the starch pastes had undergone various structural changes during freeze-thaw treatments. With an increased extent of pasting, and with an increased starch concentration, the rheological responses indicative of the destabilisation process of the starch pastes were, in general, delayed. The number of freeze-thaw cycles required for the appearance of a peak in G*, related to the first syneresis, was one, two, five and six for SP/Peak, SP/HB, SP/95°C and SP/25°C, respectively. For the starch pastes at 35, 50 and 65 g kg?1, it was four, six and seven cycles, respectively. Based on these rheological data, it was suggested that the amount of inter-mingled amylose and amylopectin in the dispersion of hydroxypropyl starch paste is the main controlling factor, which plays a critical role in the rheological response as well as in the syneresis.  相似文献   

18.
The swelling and pasting properties of non‐waxy rice starch‐hydrocolloid mixtures were investigated using commercial and laboratory‐generated hydrocolloids. The swelling power of the rice starch‐hydrocolloid mixtures was generally depressed at low concentration of hydrocolloids (0–0.05%), but increased directly with increasing hydrocolloid concentrations (0.05–0.1%). In gellan gum dispersion, the swelling power at 100°C was higher than that of control. The rice starch‐hydrocolloids mixtures showed shear‐thinning flow behavior (n = 0.26–0.49). Hydrocolloids except the exopolysaccharide from S. chungbukensis (EPS‐CB) increased apparent viscosity and consistency index (K) of rice starch dispersions, but decreased the n value. Hydrocolloids enhanced the trough and final viscosity of rice starch dispersions but EPS‐CB reduced the viscosity of rice starch pastes. Hydrocolloids lowered peak viscosity but addition of guar gum resulted in high peak viscosity, apparent viscosity, and consistency index of rice starch dispersions. Total setback viscosity appeared to be not affected by hydrocolloids at low concentration (0.05%). The hot and cold paste of the starch‐gellan gum mixture exhibited the highest viscosity values in the Brookfield viscometer.  相似文献   

19.
Benzyl corn starches (DS 0.02–0.16) were prepared by reacting starch with benzyl chloride in an alkaline aqueous medium at 65°C, and the pasting properties of the starches were investigated. Reaction yield with 20% benzyl chloride (based on starch weight) for 12 h was increased from 26.7% to 60.5% as the NaOH addition increased from 3% to 8% (based on starch weight), and became relatively constant thereafter. With 20% benzyl chloride and 8% NaOH, degree of substitution (DS) reached 0.16. Light transmittance and viscosity of starch paste were decreased as DS increased. Low viscosity and opaqueness of the paste indicated that the benzyl groups increased hydrophobicity, and reduced solubility of the starch. Onset temperature (To) for starch melting measured by a Differential Scanning Calorimeter thermogram was decreased as DS increased up to 0.1. But above DS 0.1, To increased. Melting enthalpy was also decreased as DS increase because of the incomplete gelatinization. Solubility in aqueous methanol (80%) increased near 2% as DS reached 0.16. Maximum wavelength and absorbance of the iodine complexes of benzyl starch were decreased with benzylation.  相似文献   

20.
Presently, rice cultivars are categorized according to amylose content into three groups: low, medium and high amylose content cultivars. The correlation of amylose content with gelatinization properties, retrogradation, and pasting properties of eleven cultivars of Thai rice were investigated. Rice flour was prepared from milled rice by the wet grinding process. Onset (To), peak (Tp) and conclusion (Tc) temperatures of gelatinization, (determined by DSC) were found to be highly positively correlated with amylose levels. This correlation could be used for prediction of amylose content of rice flour. Low amylose starch could also be characterized by low degree of retrogradation (%R). The data obtained from RVA‐viscograms (peak viscosity, breakdown, setback, and pasting temperature) can be used only for characterization of the group of low amylose starches (waxy rice). It was demonstrated that low amylose rice starch provided the highest peak viscosity and breakdown and the lowest setback and pasting temperature among the groups investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号