首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, skate skin gelatin (SSG) was used as a new biodegradable film source and a SSG film was prepared. In addition, thyme essential oil (TEO) was incorporated in the SSG film as an antimicrobial agent for the preparation of an antimicrobial film. The tensile strength (TS) of the film decreased, whereas elongation at break (E) increased by the addition of TEO. The SSG film containing TEO showed increased antimicrobial activity against Listeria monocytogenes and Escherichia coli O157:H7 as TEO concentration increased. To apply the SSG film to food packaging, chicken tenderloin samples were wrapped with the film containing 1% TEO. The packaging of chicken tenderloin with the TEO‐containing SSG film inhibited the growth of L. monocytogenes and E. coli O157:H7 compared to the control during storage. Therefore, the SSG film with added TEO has potential as active food packaging to extend the shelf life of chicken tenderloin.  相似文献   

2.
ABSTRACT: Antimicrobial polyethylene and cellulose based films incorporated with triclosan were studied. The antimicrobial efficacy, the hydrophobicity, microscopic and the mechanical characteristics of the films, as well free energy of adhesion between bacteria and antimicrobial films were evaluated. It was observed that both polyethylene and cellulose based films incorporated with the antimicrobial were homogeneous. Furthermore, the addition of triclosan did not affect mechanical characteristics of the films (P > 0.05). However, triclosan incorporated into polyethylene films reduced its hydrophobicity while antimicrobial cellulose based films became more hydrophobic. The adhesion was thermodynamically favorable between tested bacteria and polyethylene films. On the other hand, the adhesion to triclosan cellulose based film was thermodynamically unfavorable to Staphylococcus aureus and Escherichia coli and favorable to Listeria innocua and Pseudomonas aeruginosa. Polyethylene and cellulose based films showed inhibitory effect against S. aureus and E. coli, being the inhibition halo higher for polyethylene films. This study improves the knowledge about antimicrobial films.  相似文献   

3.
Sibel Tunç  Osman Duman 《LWT》2011,44(2):465-472
Methyl cellulose (MC)/carvacrol (CRV)/montmorillonite (MMT) nanocomposite films were prepared to obtain active antimicrobial packaging materials. The characterization of film samples by X-ray diffraction and transmission electron microscopy showed that composite films were of nano structures. CRV addition to the MC film and MC/MMT nanocomposite films led to a decrease in the thickness and opacity values of them, whereas MMT addition to the film matrix caused an increase in these values. Thermal stability of films slightly increased with increasing MMT concentration in film matrix. CRV release from films was investigated at different temperatures for 30 days. An increase in the MMT concentration matrix caused a decrease in CRV release at 25.0 ± 0.5 °C and in 60 ± 4% relative humidity (RH). CRV release increased with temperature at a constant RH. The antimicrobial activities of films were tested against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) by the microatmosphere method and these organisms were completely inhibited on the nutrient broth/bacteriological agar medium when film samples containing 11.1 ± 0.2 mg CRV were present. MC/CRV film and MC/CRV/MMT-60% nanocomposite films on sausage reduced E. coli and S. aureus counts by 0.9 and 0.7 log cfu/mL, respectively, compared to the control film. The amount of CRV release from developed antimicrobial films can be controlled by MMT concentration within the film matrix and by the storage temperature of film.  相似文献   

4.
Antibacterial activity of soy protein edible films (SPEF) incorporated with 1, 2, 3, 4 and 5% oregano (OR) or thyme (TH) essential oils was evaluated against Escherichia coli, E. coli O157:H7, Staphylococcus aureus, Pseudomonas aeruginosa and Lactobacillus plantarum by the inhibition zone test. Effects of SPEF containing 5% OR and TH or a mixture of OR + TH (ORT) were also tested on fresh ground beef during refrigerated storage (at 4 °C). OR and TH incorporated SPEF exhibited similar antibacterial activity against all bacteria in inhibition zone test. While E. coli, E. coli O157:H7 and S. aureus were significantly inhibited by antimicrobial films, L. plantarum and P. aeruginosa appeared to be the more resistant bacteria. SPEF with OR, ORT, and TH did not have significant effects on total viable counts, lactic acid bacteria and Staphylococcus spp. when applied on ground beef patties whereas reductions (p < 0.05) in coliform and Pseudomonas spp. counts were observed.  相似文献   

5.
The presence of Escherichia coli, Staphylococcus aureus, Listeria monocytogenes and Salmonella spp. was determined in 75 samples of conventional beef and in 75 samples of organic beef. All samples came from cattle slaughtered and processed in the same slaughterhouse and quartering room. A total of 180 E. coli, 180 S. aureus and 98 L. monocytogenes strains were analyzed by an agar disk diffusion assay for their resistance to 11 antimicrobials, for the case of E. coli and S. aureus, or 9 antimicrobials, for the case of L. monocytogenes. Salmonella spp. were not isolated from any of the beef samples. No significant differences in prevalence were obtained for any of the bacterial species tested between organic and conventional beef. E. coli isolated from organic beef exhibited significant differences in antimicrobial resistance against 5 of the 11 antimicrobials tested as compared to isolates recovered from conventional beef. In the case of S. aureus, these differences were only found for 3 of the 11 antimicrobials tested and for L. monocytogenes, no differences were obtained between isolates obtained from organic or conventional beef. Although no significant differences were obtained in microbiological contamination, E. coli and S. aureus isolates from organically farmed beef samples showed significantly lower rates of antimicrobial resistance in E. coli and S. aureus isolates.  相似文献   

6.
Electrospinning is conducted with polylactic acid (PLA) and tea polypheno (TP) to obtain PLA/TP composite nanofibrous films with high antimicrobial activity. An investigation of the composition, antimicrobial activity, and mechanism of these composite nanofibrous films was conducted by using infrared spectroscopy (FT-IR), inhibition zone method, fluorescence activated cell sorter (FACS), and transmission electron microscope (TEM). IR spectra results showed that TP and PLA composited well through valence bonds in PLA/TP composite nanofibrous films. Ranges of the inhibition zone for the growth of Escherichia coli (E. coli) and Staphylococcus (Staphylococcus aureus) were 3.67 and 3.71?cm in pure PLA nanofibrous films, but 5.17 and 5.67?cm in PLA/TP composite nanofibrous films, respectively. Results indicated that the antimicrobial activity of PLA/TP composite nanofibrous films were much higher than that of pure PLA nanofibrous films. Meanwhile, the antimicrobial activity against S. aureus was also slightly higher than E. coli. FACS results showed that the positive rate of PLA/TP composite nanofiber films was greater than that of pure PLA nanofibrous films, increasing from 1.45 and 0.78% to 9.26 and 6.47% against S. aureus and E. coli, respectively. The result of TEM indicated that PLA/TP composite nanofibrous films led to the death of bacteria by destroying the integrity of cell membrane.  相似文献   

7.
We investigated the combined antimicrobial effect of nisin and chitosan hydrolysates (CHs) by regulating the antimicrobial reaction order of substances due to differential releasing rate from hydroxypropylmethylcellulose‐modified bacterial cellulose (HBC). The minimum inhibitory concentration of nisin against Staphylococcus aureus and that of CHs against Escherichia coli were 6 IU and 200 μg/mL, respectively. Hurdle and additive effects in antimicrobial tests were observed when nisin was used 6 h before CH treatment against S. aureus; similar effects were observed when CH was used before nisin treatment against E. coli. Simultaneously combined treatment of nisin and CHs exhibited the low antimicrobial effect. HBC was then selected as the carrier for the controlled release of nisin and CHs. A 90% inhibition in the growth of S. aureus and E. coli was achieved when 30 IU‐nisin‐containing HBC and 62.5 μg/mL‐CH‐containing HBC were used simultaneously. The controlled release of nisin and CHs by using HBC minimized the interaction between nisin and CHs as well as increased the number of microbial targets.  相似文献   

8.
The antimicrobial properties of wood extracts are well known; however their application to edible films is limited. In this study, the minimum bactericidal concentration (MBC) of kiam wood extract was established as 300 mg/L at which bacterial growth was completely inhibited. The antimicrobial properties of hydroxypropyl methylcellulose (HPMC) films containing 1-5 fold of MBC of kiam wood extract were tested against Escherichia coli O175:H7, Staphylococcus aureus and Listeria monocytogenes. The edible films containing kiam wood extract exhibited more effective impact on the growth reduction of L. monocytogenes than S. aureus and E. coli (p < 0.05). The use of kiam wood extract at 1 and 2 fold of MBC incorporated into edible HPMC films did not exhibit any antimicrobial activity. However, the inhibitory effect of edible HPMC films containing kiam wood extract was observed at 3, 4 and 5 fold of MBC. The greatest zone of inhibition was observed at 5 fold of MBC incorporated in edible HPMC films. Tensile strength and elongation at break significantly decreased with the incorporation of kiam wood extract, whereas water vapor permeability and film solubility increased. The color of edible films became darker and more reddish-yellowish as well as having a lower transparency as the level of kiam wood extract was increased. Kiam wood extract incorporated in edible film provided the films with a rougher surface than pure edible film. Our results pointed out that the incorporation of kiam wood extract as a natural antibacterial agent has potential for use in extending the shelf life of food products.  相似文献   

9.
The monomeric phenolic components of adzuki bean seed coat polyphenols (ABSCPs) were analysed, and their antibacterial activity and mechanism against two tested bacteria (Escherichia coli ATCC8797 and Staphylococcus aureus ATCC12600) were evaluated for their potential application in preservation of fresh raw beef. ABSCP contained 13 kinds of monomeric phenols, and the minimum inhibition concentration (MIC) of ABSCP against E. coli and S. aureus was 1250 and 625 μg ml−1, respectively. The mechanism of ABSCP against E. coli and S. aureus was associated with increased cell protein and nucleic acid leakage, increased cell membrane potential, decreased intracellular ATP concentration and morphological changes in bacterial cell. In addition, ABSCP with whey protein isolate (WPI) was applied to fresh raw beef and this remarkably retarded microbial growth by maintaining the total microbial quality below the acceptable limit of 6 lg CFU g−1 for 14 days. Lower pH and total volatile base nitrogen values were observed in the coated samples during refrigerated storage (4 °C). As a result, we found that ABSCP, as a natural food bacteriostatic agent, can effectively inhibit the growth of E. coli and S. aureus and combined with WPI to apply to fresh raw beef to extend its shelf life.  相似文献   

10.
The incorporation of essential oils and nanotechnology into edible films has the potential to improve the microbiological safety of foods. The aim of this study was to evaluate the effectiveness of pullulan films containing essential oils and nanoparticles against 4 foodborne pathogens. Initial experiments using plate overlay assays demonstrated that 2% oregano essential oil was active against Staphylococcus aureus and Salmonella Typhimurium, whereas Listeria monocytogenes and Escherichia coli O157:H7 were not inhibited. Two percent rosemary essential oil was active against S. aureus, L. monocytogenes, E. coli O157:H7, and S. Typhimurium, when compared with 1%. Zinc oxide nanoparticles at 110 nm were active against S. aureus, L. monocytogenes, E. coli O157:H7, and S. Typhimurium, when compared with 100 or 130 nm. Conversely, 100 nm silver (Ag) nanoparticles were more active against S. aureus than L. monocytogenes. Using the results from these experiments, the compounds exhibiting the greatest activity were incorporated into pullulan films and found to inhibit all or some of the 4 pathogens in plate overlay assays. In challenge studies, pullulan films containing the compounds effectively inhibited the pathogens associated with vacuum packaged meat and poultry products stored at 4 °C for up to 3 wk, as compared to control films. Additionally, the structure and cross‐section of the films were evaluated using electron microscopy. The results from this study demonstrate that edible films made from pullulan and incorporated with essential oils or nanoparticles may improve the safety of refrigerated, fresh or further processed meat and poultry products.  相似文献   

11.
To develop a value‐added product, we used the under‐utilised seaweed Undaria pinnatifida as a source material for the fabrication of a biodegradable film by extracting U. pinnatifida protein (UPP). UPP/gelatine composite films with different constituent ratios were prepared. In addition, the UPP/gelatine composite films containing vanillin (0.05%, 0.1% and 0.5%) were prepared as antimicrobial packaging material. To evaluate the utility of the UPP composite film containing 0.5% vanillin as food packaging material, smoked chicken breast samples inoculated with Escherichia coli were packed with the film and stored at 4 °C for 10 days. It was observed that packaging of smoked chicken breast with the UPP composite film containing vanillin decreased the population of the inoculated E. coli by 1.12 log CFU g?1 compared with that in the control sample. Thus, the UPP/gelatine composite film with added vanillin can be utilised as a packaging material for smoked chicken breast.  相似文献   

12.
In this study, we developed an effective technology for the extraction of sericin from the cocoons of Bombyx mori silk worms. Sericin was extracted with ice cold ethanol to obtain crude extract. Sericin extract was coated onto cotton fabric by a pad–dry–cure method. FTIR characterization of the sericin-coated cotton fabric showed distinct amide peaks. The test organisms that were used in the study to assess the antimicrobial activity of sericin were Escherichia coli and Staphylococcus aureus according to AATCC standard. The antimicrobial activity of the sericin thus extracted was assessed by both qualitative (agar diffusion and parallel streak method) and quantitative (percentage reduction test) methods. An inhibition zone of 28 mm and 30 mm for E. coli and S. aureus by agar diffusion method and a zone of 40 mm and 42 mm for E. coli and S. aureus by parallel streak method were obtained. Quantitative assessment by percentage reduction test showed a reduction percentage of 89.4% and 81% for S. aureus and E. coli, respectively. Results suggested that sericin might be a valuable ingredient for the development of antimicrobial textiles.  相似文献   

13.
Colloidal silver nanoparticles with a size of 5.5 ± 1.1 nm were prepared by chemical reduction using polyethylene glycol (PEG). Silver nanoparticles were incorporated into low-density polyethylene (LDPE) by melt blending and subsequent hot pressing at 140 °C to produce nanocomposite film with an average thickness of 0.7 mm. PEG was added at 5% weight of polymer as a compatibilizer agent in order to prevent agglomeration and provide uniform distribution of nanoparticles in polymer matrix. Antimicrobial activity of silver nanocomposites against Escherichia coli ATCC 13706, Staphylococcus aureus ATCC12600, and Candida albicans ATCC10231 was evaluated by semi-qualitative agar diffusion test and quantitative dynamic shake flask test. Mechanical properties of nanocomposites were not significantly different from silver-free LDPE-containing PEG films (p > 0.05), and silver nanoparticles did not form chemical bonding with the polymer. LDPE-silver nanocomposite samples by more than 6.69 ppm silver nanoparticles showed considerable antimicrobial clear zone. LDPE-silver nanocomposite affected growth kinetic parameters of the examined bacteria and is more efficient on S. aureus than E. coli. Polyethylene-silver nanocomposites containing 22.64 ppm silver nanoparticles could reduce 57.8% growth rate and 23.3% maximum bacterial concentration and increase 35.8% lag time of S. aureus. This study shows the potential use of LDPE-silver nanocomposite as antimicrobial active film. Antimicrobial efficiency of silver nanocomposite depends on silver nanoparticles concentration; however, high level of silver nanoparticles may lead to weakening of mechanical properties.  相似文献   

14.
In this study, antimicrobial activity of zein films incorporated with partially purified lysozyme and disodium ethylenediaminetetraacetic acid (Na2EDTA) has been tested on selected pathogenic bacteria and refrigerated ground beef patties. The developed films containing 700 μg cm?2 lysozyme and 300 μg cm?2 Na2EDTA showed antimicrobial activity on Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella typhimurium. The application of lysozyme and Na2EDTA incorporated zein films on beef patties significantly decreased total viable counts (TVC) and total coliform counts after 5 days of storage compared to those of control patties (P < 0.05). Zein films incorporated with lysozyme and Na2EDTA or Na2EDTA alone significantly slowed down the oxidative changes in patties during storage (P < 0.05). Redness indices of patties coated with zein films were significantly lower than those of uncoated control patties during storage (P < 0.05). This study demonstrated the potential usage of zein films containing lysozyme and Na2EDTA for active packaging of refrigerated meat products.  相似文献   

15.
The aim of this study was to determine the properties of gelatin films incorporated with thymol. Gelatin films were prepared from gelatin solutions (10% w/v) containing thymol (1, 2, 4, and 8% w/w), glycerol (25% w/w) as plasticizer, and glutaraldehyde (2% w/w) as cross‐linker. Cross‐likened films showed higher tensile strength, higher elongation at break, lower Young's modulus, lower water solubility, lower swelling, lower water uptake, and lower water vapor permeability. Incorporation of thymol caused a significant decrease in tensile strength, increase in elongation at break, decrease in Young's modulus, increase in water solubility, decrease in swelling and water uptake, and increase in water vapor permeability slightly. The films incorporated with thymol exhibited excellent antioxidant and antibacterial properties. The antibacterial activity of the films containing thymol was greatest against Staphylucoccus aureus followed by Bacillus subtilis followed by Escherichia coli and then by Pseudomonas aeruginosa. Thus, gelatin films‐containing thymol can be used as safe and effective source of natural antioxidant and antimicrobial agents with the purpose of evaluating their potential use as modern nano wound dressing. Practical Application : This study clearly demonstrates the potential of gelatin films incorporated with thymol as natural antioxidant and antimicrobial nano film. Such antimicrobial films exhibited excellent mechanical, physical, and water activities and could be used as antibacterial nano wound dressing against wounds burn pathogens.  相似文献   

16.
Lactoferrin (LF), lysozyme (LZ), the lactoperoxidase system (LPOS), and edible whey protein isolate (WPI) films incorporating LPOS were studied for inhibition of Salmonella enterica and Escherichia coli O157:H7. Antimicrobial effects of LF (5 to 40 mg/mL), LZ (1 to 20 mg/mL), and LPOS (0.5% to 5.0% [w/v] [0.03–.25 g/g, dry basis]) were examined by measuring turbidity of antimicrobial‐containing media after inoculation and by examining cell inhibition by WPI films incorporating LPOS (LPOS‐WPI films) on an agar recovery medium. Elastic modulus (EM), tensile strength (TS), percent elongation (%E), oxygen permeability (OP), and Hunter L, a and b of WPI films incorporating 0.03 to 0.25 g/g of LPOS were compared with those of plain WPI films without LPOS. The growth of S. enterica and E. coli O157:H7 (4 log colony‐forming units [CFU]/mL) in tryptic soy broth (TSB) was not prevented by LF at ≥20 and ≥40 mg/mL, respectively. S. enterica and E. coli O157:H7 in TSB were not inhibited by LZ at ≥ 6 and ≥ 20 mg/mL, respectively. LPOS at concentrations of 2.75% (w/v) and 1.0% (w/v) reduced S. enterica and E. coli O157:H7 to below the limit of detection (1 CFU/mL) in TSB, respectively. LPOS‐WPI films (0.15 g/g) completely inhibited S. enterica and E. coli O157:H7 (4 log CFU/cm2), inoculated either onto agar before placing the film disc or onto top of the film disc. Incorporation of 0.25 g/g of LPOS decreased EM, TS, and %E. The oxygen barrier property of WPI films was improved with the incorporation of LPOS at 0.15 to 0.25 g/g.  相似文献   

17.
Applications of whey protein concentrate (WPC)-based films have been limited in the food industry due to their poor mechanical properties. This research aims to evaluate the effect of silver nanoparticles (AgNPs) synthesised by Aspergillus niger on the mechanical and antimicrobial properties of WPC-based films. The biosynthesised AgNPs solution was added into the WPC film formula at the concentration of 0, 0.25 and 1.25 mm . The film samples containing AgNPs inhibited the growth of Staphylococcus aureus, Escherichia coli O157:H7, Salmonella Enteritidis, Listeria monocytogenes, Williopsis saturnus or Aspergillus sydowii with zones of inhibition ranging from 13 to 19.7 mm. Incorporation of AgNPs improved tensile strength and water barrier properties of the films by 84% and 67%, respectively. However, per cent elongation at the break of the film decreased from 37% to 11% by the addition of 1.25 mm AgNPs. This work provides a protocol for preparing improved antimicrobial WPC films with AgNPs.  相似文献   

18.
ABSTRACT: The effectiveness of whey protein isolate (WPI) coatings incorporated with grape seed extract (GSE), nisin (N), malic acid (MA), and ethylenediamine tetraacetic acid (EDTA) and their combinations to inhibit the growth of Listeria monocytogenes, E. coli O157:H7, and Salmonella typhimurium were evaluated in a turkey frankfurter system through surface inoculation (approximately 106 CFU/g) of pathogens. The inoculated frankfurters were dipped into WPI film forming solutions both with and without the addition of antimicrobial agents (GSE, MA, or N and EDTA, or combinations). Samples were stored at 4 °C for 28 d. The L. monocytogenes population (5.5 log/g) decreased to 2.3 log/g after 28 d at 4 °C in the samples containing nisin (6000 IU/g) combined with GSE (0.5%) and MA (1.0%). The S. typhimurium population (6.0 log/g) was decreased to approximately 1 log cycles after 28 d at 4 °C in the samples coated with WPI containing a combination of N, MA, GSE, and EDTA. The E. coli O157:H7 population (6.15 log/g) was decreased by 4.6 log cycles after 28 d in samples containing WPI coating incorporated with N, MA, and EDTA. These findings demonstrated that the use of an edible film coating containing nisin, organic acids, and natural extracts is a promising means of controlling the growth and recontamination of L. monocytogenes, S. typhimurium, and E. coli O157:H7 in ready‐to‐eat poultry products.  相似文献   

19.
Essential oil has antimicrobial activity. Encapsulation of essential oil might affect its antimicrobial activity. The present study was aimed to study the characteristic of red ginger essential oil microcapsule obtained from varying Arabic gum ratios on the growth inhibition of E. coli dan S. aureus. Red ginger essential oil from steam distillation was coated using Arabic gum with ratio 1:3, 1:4, 1:5 (w/b). The 1:3 (v/w) ratio of red ginger essential oil and Arabic gum showed the best microcapsule characteristics with average inhibition diameter zones 5.67 mm for E. coli and 6.67 mm for S. aureus, and reduction of bacterial count for E. coli 1.8 log CFU/g and S. aureus 2.3 log CFU/g, yield of microcapsule 51.54%, water activity 0.207, water content 3.57%, solubility 97.46%, surface oil 0.08%, and particle size 258.2 µm. The major component of red ginger essential oil was ar-curcumene, zingiberen, β-bisabolene, β-sesquiphellandrene, and camphene.  相似文献   

20.
The antimicrobial effects of apple-, carrot-, and hibiscus-based edible films containing carvacrol and cinnamaldehyde against Escherichia coli O157:H7 on organic leafy greens in sealed plastic bags were investigated. Fresh-cut Romaine and Iceberg lettuce, and mature and baby spinach leaves were inoculated with E. coli O157:H7 and placed into Ziploc® bags. Edible films were then added to the bags, which were stored at 4°C. The evaluation of samples taken at days 0, 3, and 7 showed that on all leafy greens, 3% carvacrol-containing films had the greatest effect against E. coli O157:H7, reducing the bacterial population by about 5 log CFU/g on day 0. All three types of 3% carvacrol-containing films reduced E. coli O157:H7 by about 5 log CFU/g at day 0. The 1.5% carvacrol-containing films reduced E. coli O157:H7 by 1–4 logs CFU/g at day 7. Films with 3% cinnamaldehyde showed reduction of 0.6–3 logs CFU/g on different leafy greens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号