首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
采用数值模拟方式研究充满了纳米流体的封闭腔内的稳态自然对流。重点分析了纳米颗粒的体积分数,Ra数以及不同类型纳米颗粒对自然对流换热特性的影响。数值模拟结果表明:在纯水中加入纳米颗粒可以显著提高基液的自然对流换热特性;对于给定的Ra数下,随着纳米流体的体积分数增大,纳米流体换热效果显著增强;对于给定的体积分数下,随着Ra数增大,纳米流体的换热强度也随之增大,并且换热机理由热传导为主变为热对流为主;通过Ag,Cu,CuO和Al2O3四种纳米颗粒的对流换热效果比较分析得出,金属Ag和Cu纳米颗粒比金属氧化物CuO和Al2O3的纳米颗粒制备的纳米流体的对流换热效果更好。  相似文献   

2.
对充满Cu-水纳米流体的二维倾斜方腔内的自然对流换热进行了数值研究,研究了纳米颗粒体积份额φ、Ra数和腔体倾角对自然对流换热特性的影响。数值模拟结果表明:在纯水中加入纳米颗粒可以显著提高基液的自然对流换热特性;在一定的腔体倾角φ下,增大Ra均可以强化腔体内的自然对流换热,而且随Ra数的增大,强化效果越强;当Ra=104时,对不同的腔体倾角,纳米流体对换热强度提高的比例大致相当。  相似文献   

3.
通过数值模拟的方法研究了层流状态下雷诺数、体积分数、颗粒和基液种类以及颗粒粒径对纳米流体对流传热特性的影响。研究结果表明,纳米流体的对流传热系数明显高于基液,并且与基液和颗粒的性质、颗粒的体积分数及颗粒粒径密切相关。纳米流体的对流传热系数随着颗粒和基液热导率的增加、颗粒体积分数的增加以及颗粒粒径的减小而增大。研究发现,对于一定体积分数的Cu-水纳米流体,在层流状态下对流传热系数的提高程度基本保持一致,与雷诺数大小无关。  相似文献   

4.
采用Fluent软件对圆环封闭腔内的Ag-水纳米流体自然对流传热进行数值模拟,着重分析在不同瑞利数下Ag纳米颗粒的添加量和圆环内外壁半径比对圆环传热性能的影响.研究结果表明,随着瑞利数的增加,圆环间的换热强度不断加剧,换热由热传导逐渐向对流转变.添加纳米颗粒降低了换热性能,且随着颗粒浓度的增加换热效果不断恶化;同时,圆环半径比对换热有很大的影响,对一定的瑞利数而言随着半径比的减小,换热性能逐渐增强,且增大的趋势越来越显著.  相似文献   

5.
采用格子Boltzmann方法研究纳米颗粒形状影响下方腔内纳米流体热毛细对流的强化传热效果,主要分析了纳米粒子体积分数、颗粒形状以及Marangoni数Ma等相关参数对于纳米流体热毛细对流换热过程的影响。结果表明:长径比(长/半径)对纳米流体换热效果有影响,形状因子越大,平均Nu数Nuave越大。随着体积分数的增加,棒状、盘状和正方体状纳米颗粒均使热毛细对流的Nuave数减少,球状纳米颗粒条件下热毛细对流的Nuave数增加。Ma数越大,纳米流体热毛细对流的自由表面速度越大,对流换热效果也随之增强。   相似文献   

6.
对充满Cu-水纳米流体方腔内的非稳态自然对流换热进行了数值研究。综合研究了不同振荡波形下,纳米颗粒的体积份额和振荡波幅A对自然对流换热的影响。结果表明:在水中添加Cu纳米颗粒可以强化水的自然对流换热;体积份额和振荡波幅A的增大都加强纳米流体自然对流换热,但是不同振荡波形,加强程度不同并提出振荡面积S的概念,即振荡波形与其平均值围成的面积,曲线拟合显示时均努塞尔特数Nu随S增大呈指数曲线上升。  相似文献   

7.
纳米流体强化对流换热的实验研究   总被引:2,自引:0,他引:2  
建立了纳米流体对流换热系数的实验测试系统,利用实验系统测量YCu-H2O纳米流体的对流换热系数,探讨了纳米颗粒质最分数、Re数和轴向比对Cu-水纳米流体对流换热性能的影响.结果表明:Cu-水纳米流体的对流换热系数随纳米粒子质量分数的增人而增人,但其对流换热系数的增加明显低于导热系数的增加.随着雷诺数的增人,纳米流体的对流换热系数基本呈线性提高.纳米流体在实验管进口段的对流换热系数提岛值明显高于流体在充分发展段的提高值.纳米流体的导热系数、粘度和纳米颗粒迁移是影响纳米流体对流换热系数的主要因素.  相似文献   

8.
在多种倾斜角度下,对封闭腔内液体进行了数值模拟。重点分析了Ra数变化和倾斜角度对对流传热的影响。研究表明:随着Ra数的增大,换热由热传导为主转化为对流换热为主;倾斜角度对Nu数的变化影响很大,并且当倾斜角度处于90o~135o时,Nu数可以达到最大值。  相似文献   

9.
文献采用数值模拟方式研究充满了纳米流体封闭腔内的瞬态自然对流。热边界条件为温度周期性变化的正弦函数。重点分析了在同一Ra下,正弦函数的振幅和频率(或周期)对纳米流体强化对流换热的影响;结果显示:随着热边界的正弦函数的振幅和频率变大,热边界的瞬态Nu数和平均Nu数也越大;同时还观察封闭腔内的漩涡中心,随时间变化周期性发生转移;这些结果对后期研究纳米流体的瞬态自然对流有很大的帮助。  相似文献   

10.
刘尧东  张燕平  万亮  高伟 《发电技术》2021,42(2):230-237
基于计算流体动力学中的有限体积法,研究了Al2O3/Syltherm800导热油纳米流体作为传热介质时槽式太阳能热发电集热器的性能,建立了真空管集热器的三维模型,进行了光学模拟和传热数值模拟,并通过实验进行了验证。在非均匀热流密度分布的情况下,研究了进口温度、进口流速等运行参数对采用纳米流体的槽式集热器传热性能的影响规律。结果表明:随着Al2O3体积分数的增加,槽式集热器的换热性能及热效率均有所提高;进口温度、进口流速等运行参数对集热器的传热性能影响很大,随着进口温度的上升和进口流速的减小,纳米流体对传热性能的影响程度逐渐增大。  相似文献   

11.
In this paper we analyse flow and heat transfer characteristics of nanofluids in natural convection flows in closed cavities. We consider two test cases: natural convection in a three-dimensional differentially heated cavity, and flow around a hotstrip located in two positions within a cavity. Simulations were performed for Rayleigh number values ranging from 103 to 106. Performance of three types of water based nanofluids was compared with pure water and air. Stable suspensions of Cu, Al2O3 and TiO2 solid nanoparticles in water were considered for different volume fractions ranging up to 20%. We present and compare heat flux for all cases and analyse heat transfer enhancement attributed to nanofluids in terms of their enhanced thermal properties and changed flow characteristics. Results show that, using nanofluids, the largest heat transfer enhancements can be achieved in conduction dominated flows as well as that nanofluids increase the three-dimensional character of the flow field. We additionally examine the relationship between vorticity, vorticity flux and heat transfer for flow of nanofluids.The simulations were performed using a three-dimensional boundary element method based flow solver, which has been adapted for the simulation of nanofluids. The numerical algorithm is based on the combination of single domain and subdomain boundary element method, which are used to solve the velocity–vorticity formulation of Navier–Stokes equations. In the paper we present the adaptation of the solver for simulation of nanofluids. Additionally, we developed a dynamic solver accuracy algorithm, which was used to speed up the simulations.  相似文献   

12.
This paper presents the dual reciprocity boundary element method (DRBEM) solution of the unsteady natural convective flow of nanofluids in enclosures with a heat source. The implicit Euler scheme is used for time integration. All the convective terms are evaluated in terms of DRBEM coordinate matrix. The vorticity boundary conditions are obtained from the Taylor series expansion of stream function equation. The results report that the average Nusselt number increases with the increase in both volume fraction and Rayleigh number. It is also observed that an increase in heater length reduces the heat transfer. The average Nusselt number of aluminum oxide-water based nanofluid is found to be smaller than that of copper-water based nanofluid. Results are given in terms of streamlines, isotherms, vorticity contours, velocity profiles and tables containing average Nusselt number for several values of Rayleigh number, heater length, volume fraction, and number of iterations together with CPU times.  相似文献   

13.
Abstract

In this article, flow and heat transfer of nanofluids inside a wavy square enclosure filled with non-Newtonian (shear thinning) nanofluid under magnetic field has been simulated numerically. Single-phase model is used. The governing equations have been solved numerically using element free Galerkin method. The results are obtained for isotherms, streamlines, and average Nusselt number for various values of Hartmann number, Rayleigh number, nanoparticles volume fraction, and power-law index. Here, the main objective is to explore the effect of power-law index, Rayleigh number, Hartmann number, and volume fraction on average Nusselt number. It is found that in the absence of magnetic field, Nusselt number drops on increasing the value of power-law index whereas in the presence of magnetic field, heat transfer rate increases with increase in power-law index. With the increase in Rayleigh number and volume fraction of nanoparticles, the heat transfer rate increase in all cases. This type of problem has a direct application in the coolant systems, solar collector where the structure used is wavy in order to increase the rate of heat flow. Here, EFGM is efficiently applied for simulation due to irregular domain, which creates a novelty in the work.  相似文献   

14.
A numerical analysis of laminar natural convection with entropy generation in a partially heated open triangular cavity filled with a Cu-water nanofluid has been carried out. Mathematical model including partial differential equations and boundary conditions has been solved by using finite difference method. Particular efforts have been focused on the effects of Rayleigh number, nanoparticles volume fraction and position of the local heater on streamlines, isotherms, local entropy generation as well as local and average Nusselt number, average Bejan number, average entropy generation and fluid flow rate. Obtained results have demonstrated that the heat transfer enhancement and fluid flow attenuation with nanoparticles volume fraction, mainly for high values of Rayleigh number.  相似文献   

15.
ABSTRACT

Numerical unsteady natural convection flow in a square cavity in the presence of uniform magnetic field is investigated. The cavity is filled with CNT-water nanofluid and heated from below with sinusoidal temperature distribution. This study has been conducted for the certain pertinent parameters of Rayleigh number Ra, Hartmann number Ha and the CNT volume fraction from Φ?=?0 to 0.12. The results indicate, that for large values of Ha, increasing Φ results in an increase of the normalized average Nusselt number. The rate corresponding to CNT- volume fraction nanoparticles of 10% ensures an enhancement about 50% of the heat transfer rate compared to the standard case. The flow undergoes a period bifurcation at a Rayleigh number beyond the value 106. A critical Rayleigh number Rac of 1.077?×?106 is then computed. Finally, a correlation giving the average Nusselt number as a function of the frequency of the periodic regime is established.  相似文献   

16.
《Advanced Powder Technology》2020,31(8):3120-3133
Convective heat transfer plays a significant role in numerous industrial cooling and heating applications. This method of heat transfer can be passively improved by reconfiguring flow passage, fluid thermophysical properties, or boundary conditions. The broader scope of nanotechnology introduced several studies of thermal engineering and heat transfer. Nano-fluids are one of such technology which can be thought of engineered colloidal fluids with nano-sized particles. In the present study, turbulent forced convection heat transfer to nanofluids in an axisymmetric abrupt expansion heat exchanger was investigated experimentally. During heat transfer investigation, the functionalized multiwalled carbon nanotubes (MWCNT-COOH), polycarboxylate functionalized graphene nanoplatelets (F-GNP), SiO2 and ZnO water-based nanofluids were used. The convective heat transfer coefficient of fully developed turbulent flow of nanofluids flowing through an abrupt enlargement with the expansion ratio (ER) of 2 was experimentally determined at a constant wall heat flux of 12,128.56 W/m2. The experiments were conducted at the Re ranges of 4000–16,000. The observed Nusselt numbers were higher than in the case of fully developed pipe flow indicating the level of the turbulent transport is high even though the recirculating velocities were a few percentages of the bulk mean velocity. The effect of Reynolds number and nanofluid’s volume concentration on heat transfer and friction losses were studied, where all the results reveal that with the increase of weight concentration and Reynolds number, the local Nusselt number enhanced at the increment of axial ratios in all the cases showing greater heat transfer rates than those of the base fluids. Comparison between the examined four types of nanofluids, show that the carbon-based nanofluids have a greater effect on enhancing heat transfer (33.7% and 16.7% heat transfer performance improvement for F-GNP and MWCNT nanofluids respectively at 0.1 wt% concentration) at the downstream of the sudden expansion pipe. There is no reported work dealing with the prediction of the local Nusselt number at the distance equivalent to the axial ratio and flow through sudden expansion. So far, two excellent correlations for the Local Nusselt number are proposed with reasonably good accuracy. Furthermore, a new correlation is developed for the average Nusselt number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号