首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
提出了一种不确定混沌系统动态神经网络直接自适应控制方法.为了确保学习过程收敛性,研究了有效的在线学习算法,证明了闭环系统的稳定性,并针对Lorenz混沌系统进行了计算机仿真研究.  相似文献   

2.
混沌系统的神经网络控制   总被引:11,自引:0,他引:11  
提出一种利用神经网络控制系统混沌运动的新方法,并用该方法实现了Lorenz和Rossler系统混沌运动控制,从而使系统由混沌运动状态转变为规则运动状态。仿真结果表明,该方法控制混沌系统响应速度快,控制精度高。  相似文献   

3.
混沌系统的RBF神经网络非线性补偿控制   总被引:1,自引:0,他引:1       下载免费PDF全文
设计RBF神经网络非线性补偿控制器,提出了混沌系统线性状态反馈的复合控制方法,将可调系统混沌行为镇定到期望目标位置或者变成周期运动.用Lorenz方程作仿真实验,结果证明了该方法的有效性.  相似文献   

4.
对于一类带有内动态的单输入-单输出不确定离散非线性系统,基于滑模预测控制技术设计了一个控制器.通过反馈校正和滚动优化技术,可以及时补偿不确定性的影响,提高了匹配和不匹配不确定项的鲁棒性.然后,通过滚动优化技术得到期望的滑模控制律.特别地,通过预测控制,滑模控制的抖振现象可以消除.最后,在不确定项的界未知的情况下,得到闭环系统的所有信号都是有界的,并且跟踪误差是鲁棒稳定的.仿真例子说明所提出控制方法的有效性.  相似文献   

5.
针对一类具有不确定项的二阶连续时间混沌系统的定值跟踪控制和自混沌同步及异结构混沌同步问题,提出了一种模糊滑模变结构控制方法,设计了模糊滑模变结构控制器,并从理论上证明了控制系统的稳定性.在该控制器的作用下,可以实现两个相同或不同结构的混沌系统的控制与同步,且不受不确定性的影响,具有很强的鲁棒性.定值跟踪和同步控制的仿真结果表明,该控制器是有效的.  相似文献   

6.
提出一种基于预测控制的神经网络控制方法,将模型未知时的混沌运动控制到不稳定的不动点(UFP)处,该控制系统不需要UFP的位置及其局性态等知识,它包括观测器、带反馈校正的神经网络在预测器和在线训练的神经网络控制器,其方法简便,收敛速度比现有同类方法快得多,同时还分析了控制系统的稳定性,并证明了神经网络控制器的收敛性,理论推导和仿真结果都表明了该方法的有效性。  相似文献   

7.
针对一类不确定时滞非线性系统,提出一种自适应跟踪控制器.首先采用Lyapunov-Krasovskii函数设计时滞补偿器,并构造其中的参数调节规律.再针对建模误筹及小确定非线性,引入动态结构自适应神经网络,其隐层神经元个数可以随着跟踪误差的增大而在线增加,以提高逼近精度.最后,用仿真示例表明本文所提方法是有效的.  相似文献   

8.
基于动态神经网络,对一类非线性不确定系统提出了相应的观测器设计方法,在观测设计中,充分考虑了不确定性和神经网络逼近误差对观测器性能的影响,增加了鲁棒控制项并设计了相应的参数自适应律,以保证良好的观测性能,神经网络的权值在线进行调整,而无需离线学习。  相似文献   

9.
张袅娜  张德江  冯勇 《控制与决策》2007,22(10):1143-1146
对于非匹配不确定混沌系统,提出一种RBF神经滑模同步方法.设计滑模切换面,并将其作为神经网络的唯一输入,网络的权值依滑模趋近条件在线确定,使得同步跟踪误差渐进到零点.该方法简化了常规神经网络控制结构的复杂性,削弱了滑模控制的抖振程度,并且同步时间较短,对参数不确定性及外干扰具有较好的鲁棒性.仿真结果验证了所提出方法的有效性.  相似文献   

10.
提出了一种利用直接自适应模糊神经网络控制与模糊滑膜控制相结合来控制一类不确定非线性混沌系统的新方法。应用Takagi-Sugeno模糊逻辑系统设计系统控制律和参数在线调整规则,使控制系统能准确的跟踪给定信号,同时具有较强的抑制系统参数摄动的能力以及抑制随机噪声的能力。仿真实验结果表明,此算法有效地实现了不确定混沌系统的追踪控制,使系统的跟踪误差减小,提高了系统的鲁棒性,应用前景十分广阔。  相似文献   

11.
A robust adaptive control is proposed for a class of single-input single-output non-affine nonlinear systems. In order to approximate the unknown nonlinear function, a novel affine-type neural network is used, and then to compensate the approximation error and external disturbance a robust control term is employed. By Lyapunov stability analysis for the closed-loop system, it is proved that tracking errors asymptotically converge to zero. Moreover, an observer is designed to estimate the system states because all the states may not be available for measurements. Furthermore, the adaptation laws of neural networks and the robust controller are given out based on the Lyapunov stability theory. Finally, two simulation examples are presented to demonstrate the effectiveness of the proposed control method.  相似文献   

12.
非线性系统神经网络自适应控制的发展现状及展望   总被引:1,自引:0,他引:1  
简要回顾了神经网络控制及其应用的发展历程,重点论述了人们在连续、离散时间非线性系统的神经网络以及神经模糊稳定自适应控制研究方面所取得的主要进展,探讨了神经网络自适应控制研究方面存在的主要问题及解决问题的基本途径.作为当前解决神经网络自适应控制问题的途径之一,介绍了近来人们对二阶模糊神经网络以及量子神经网络的研究.最后,总结并指出了这一领域下一步的发展方向和有待解决的新课题.  相似文献   

13.
针对一类控制增益函数及符号均未知的不确定非线性系统,基于反推滑模设计方法,提出一种鲁棒自适应神经网络控制方案.结合Nussbaum增益设计技术和神经网络逼近能力,取消了控制增益函数及符号已知的条件,应用积分型Lyapunov函数避免了控制器奇异性问题,并通过引入神经网络逼近误差和不确定干扰上界的自适应补偿项消除了建模误差和不确定干扰的影响.理论分析证明了闭环系统所有信号半全局一致终结有界,仿真结果验证了该方法的有效性.  相似文献   

14.
在小扰动控制技术基础上,将暂态误差预测方法和遗传算法结合起来,提出了一种混合遗传神经网络控制非线性混沌系统的新方法(简称HyGANN).通过增强学习训练,HyGANN可产生控制混沌状态的小扰动时间序列信号,Henon映射的计算机仿真结果表明,它不仅有效镇定混沌周期1,2等低周期轨道,还可成功将高周期混轨道变成期望周期行为.  相似文献   

15.
This paper presents a robust adaptive output feedback control design method for uncertain non-affine non-linear systems, which does not rely on state estimation. The approach is applicable to systems with unknown but bounded dimensions and with known relative degree. A neural network is employed to approximate the unknown modelling error. In fact, a neural network is considered to approximate and adaptively make ineffective unknown plant non-linearities. An adaptive law for the weights in the hidden layer and the output layer of the neural network are also established so that the entire closed-loop system is stable in the sense of Lyapunov. Moreover, the robustness of the system against the approximation error of neural network is achieved with the aid of an additional adaptive robustifying control term. In addition, the tracking error is guaranteed to be uniformly and asymptotically stable, rather than uniformly ultimately bounded, by using this additional control term. The proposed control algorithm is relatively straightforward and no restrictive conditions on the design parameters for achieving the systems stability are required. The effectiveness of the proposed scheme is shown through simulations of a non-affine non-linear system with unmodelled dynamics, and is compared with a second-sliding mode controller.  相似文献   

16.
针对非线性系统的控制问题,提出一种基于神经网络辨识的单步预测控制算法。算法在自回归小波神经网络的基础上,利用混沌机制消除了神经网络易陷入局部极值的缺点.采用自适应性学习率,提高神经网络的收敛能力和速度.以该神经网络为预测模型,引入输出反馈和偏差校正克服预测误差,以此构造一步加权预测控制性能指标。然后采用Brent一维搜索方法求取控制律,Brent法无需任何相关的导数信息,需调整的参数少,使得Brent法适合实时控制.仿真研究说明了该非线性预测控制器的有效性。  相似文献   

17.
对于一类具有三角结构的单输入单输出的不确定非线性系统, 用反步法(backstepping)和动态面控制方法(dynamic surface control technique)设计了一种使用神经网络补偿未知非线性的L2--增益鲁棒控制器. 控制器设计中没有直接解HJI(Hamilton-Jacobi-Isaac)不等式. 合理的选择了L2--增益性能指标, 将被控系统各个状态变量的跟踪误差和神经网络各权值的跟踪误差看作整个控制系统的各个状态变量, 并用Lyapunov定理和HJI不等式证明了使用提出的控制器后, 这些状态变量具有小于等于事先规定的正实数γ的L2--增益. 当系统的扰动信号为零向量时, 提出的控制器在原点是大范围渐近稳定的. 仿真研究结果表明所提出的控制器具有很好的跟踪性能和很强的鲁棒性.  相似文献   

18.
针对一类不确定非线性系统的跟踪控制问题,在考虑建模误差、参数不确定和外部干扰情况下,以其拥有良好的跟踪性能以及强鲁棒性为目标,提出基于回归扰动模糊神经网络干扰观测器(recurrent perturbation fuzzy neural networks disturbance observer,RPFNNDO)的鲁棒自适应二阶动态terminal滑模控制策略.将回归网络、模糊神经网络和sine-cosine扰动函数各自优势相结合,给出一种回归扰动模糊神经网络结构,提出RPFNNDO设计方法,保证干扰估计准确性;构造基于带有指数函数滑模面的二阶快速terminal滑模面,给出其控制器设计过程,避免了滑模到达阶段、传统滑模的抖振问题,采用具有指数收敛的鲁棒项抑制干扰估计误差对系统跟踪性能的影响,利用Lyapunov理论证明闭环系统的稳定性;将该方法应用于混沌陀螺系统同步控制仿真实验,结果表明所提方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号