首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A formaldehyde-free adhesive consisting of soy flour, polyethylenimine, maleic anhydride, and sodium hydroxide was investigated for making randomly oriented strandboard (R-OSB) and oriented strandboard (OSB). The hot-press conditions and the adhesive usage rate were optimized in terms of enhancing internal bond strength (IB), modulus of rupture (MOR), and modulus of elasticity (MOE) of the resulting R-OSB and OSB. The IB, MOR, and MOE were the highest at a hot-press temperature of 170°C, a hot-press time of 4–5 min, and an adhesive usage rate of 7%. The strengths of the OSB panels made with this formaldehyde-free adhesive were compared with those of commercial OSB panels purchased at a local Home Depot store.  相似文献   

2.
A soy-based formaldehyde-free adhesive consisting of soy flour (SF), polyethylenimine (PEI), maleic anhydride (MA) and NaOH was investigated for making three-layer particleboard. The weight ratio of SF/PEI/MA/NaOH was 7/1.0/0.32/0.1. Hot-press temperature, hot-press time, particleboard density and adhesive usage were optimized in terms of enhancing the modulus of rupture (MOR), modulus of elasticity (MOE) and internal bond strength (IB) of the resulting particleboard. The MOR, MOE and IB met the minimum industrial requirements of M-2 particleboard under the following variables: hot-press temperature of 170 °C, hot-press time of 270 s, the adhesive usage of surface particles at 10 wt%, the adhesive usage of the core particles at 8 wt%, and the targeted particleboard density of 0.80 g/cm3.  相似文献   

3.
A New Soy Flour-Based Adhesive for Making Interior Type II Plywood   总被引:1,自引:0,他引:1  
In this study, we developed a formaldehyde-free adhesive from abundant, renewable, and inexpensive soy flour (SF). The main ingredients of this adhesive included SF, polyethylenimine (PEI), and maleic anhydride (MA). The optimum formulation of this adhesive and the optimum hot-press conditions for making plywood were investigated. A three-cycle soak test and a boiling water test (BWT) were employed for evaluating the strength and water-resistance of plywood bonded with this adhesive. Results showed that SF, PEI, MA and sodium hydroxide were all essential components for the adhesive and the SF/PEI/MA weight ratio of 7/1.0/0.32 resulted in the highest water-resistance. When the hot-press temperature was in the range of 140–170 °C, both water-resistance and shear strength of plywood bonded with the adhesive remained statistically the same, except that the dry shear strength of plywood at 170 °C was statistically lower than that at 160 °C. When the hot-press time ranged from 2 to 6 min, the plywood panels at 5 min had the highest boiling water test/wet (BWT/w) shear strength. The plywood panels made at 5 min had a higher dry shear strength than those made at 3 min. Plywood panels bonded with this SF/PEI/MA adhesive exceeded the requirements for interior applications.  相似文献   

4.
Chemical bonding is a technique which attempts to involve chemically the surface of wood in the joint formation process. In this research, an attempt has been made to improve overall board properties while at the same time make the whole process more practical from a large-scale application point of view. Accordingly, a 50 weight% solution of nitric acid was applied to green Douglas fir flakes which were dried in a laboratory flake dryer after various time periods. The variables considered included contact time between acid and flakes before drying, time between drying and application of a gap-filling mixture, and total assembly time. Board properties determined were internal bond (IB), modulus of rupture (MOR), modulus of elasticity (MOE), and wet modulus of rupture (WMOR).

Results showed a substantial improvement in board properties compared to boards made utilizing previously reported techniques. Boards which were dried after acid treatment showed a 55% improvement in IB, an 8% improvement in MOE, and a 10% improvement in WMOR, with no change in MOR compared to control specimen values.  相似文献   

5.
Urea-formaldehyde (UF) resin is one of the most commonly used wood adhesives for making particleboards. However, UF emits carcinogenic formaldehyde and is derived from nonrenewable petrochemicals. In this study, a new formaldehyde-free wood adhesive that is based on soy flour and a renewable material-based curing agent (CA) were prepared and evaluated for the preparation of M-2 grade particleboards. The new CA was derived from ammonia and epichlorohydrin that can be derived from renewable glycerol. The composition of the adhesive was soy flour/sodium hydroxide/CA at a dry weight ratio of 9/0.3/1.0. The modulus of rupture, modulus of elasticity, and internal bond strength met the minimum industrial requirements of M-2 particleboards using the following variables: hot-press temperature of 190?°C, hot-press time of 240?s, the adhesive usage of the face particles of 12?wt.%, the adhesive usage of the core particles of 10?wt.%, and the target particleboard density of 0.80?g/cm3.  相似文献   

6.
A novel wood–plastic compatibilizer system containing a paper wet‐strength agent as a wood‐binding domain and stearic anhydride as a polyethylene (PE) binding domain was investigated. Treatment of wood flour with a commercial paper wet‐strength agent Kymene® 557H (simply called Kymene) before the mixing of PE and the wood flour increased the modulus of rupture (MOR) and the modulus of elasticity (MOE) of the resulting wood–PE composites. Addition of stearic acid in the mixing of PE and the wood–Kymene mixture further increased the MOR and MOE. Stearic anhydride was even more effective than stearic acid in the increase of the MOR and MOE. Compared to wood–PE composites without a compatibilizer, the stearic anhydride–Kymene compatibilizer system increased the MOR by about 33% and the MOE by about 40%. The stearic anhydride–Kymene compatibilizer system gave a slightly lower MOR, but higher MOE than those of the commercially used compatibilizer (maleic anhydride‐grafted polypropylene). The compatibilization mechanisms were proposed as follows: Kymene not only bound to wood fibers, but also strengthened and stiffened the wood fibers. Stearic anhydride formed covalent linkages such as ester and amide with the Kymene‐consolidated wood fibers and the long hydrocarbon chain of the stearic anhydride bonded to the PE matrix through entanglements and/or cocrystallization. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3667–3672, 2004  相似文献   

7.
The desire to prepare a lower-cost soy-based adhesive has led to an interest in using the abundant and inexpensive soy flour (SF) as a substitute for expensive soy protein isolates (SPI) in wood adhesives. However, the weakness of this adhesive is poor water-resistance and bonding strength due to a low protein content, which limits its application in the wood industry. The objective of this research was to provide a simple and useful approach for improving the adhesion performance of SF-based adhesive by introducing a small addition of melamine-urea-formaldehyde (MUF) resin into the cured system. The optimum addition level of MUF resin, as well as the adhesion performance and conformation change of SF-based adhesive, were investigated. The analytical results indicated that the co-condensed methylene bridges were formed through the reaction of methylol groups of MUF resin with soy units during the hot-press process. The addition of MUF resin, not only significantly decrease the viscosity of SF-based adhesive but also increase its water-resistance and wet shear strength value. The SF-based adhesive containing 20% MUF resin, is a relatively low-cost adhesive, has a reasonable viscosity, and moreover can pass the Chinese Industrial Standard requirement (0.7 MPa) for interior plywood panels.  相似文献   

8.
A new formaldehyde-free wood adhesive from renewable materials   总被引:2,自引:0,他引:2  
A formaldehyde-free adhesive that consists of soy flour (SF) and a new curing agent (CA) was developed and evaluated for making interior plywood. Three types of plywood panels (seven-ply maple/white fir/pine/white fir/pine/white fir/maple, five-ply yellow poplar, and five-ply aspen) were prepared with the SF–CA adhesives and evaluated for their water resistance. The CA was derived from the reaction of epichlorohydrin (ECH) and ammonium hydroxide in water. Effects of the reaction time, reaction temperature, NaOH usage, heat treatment of CA, addition order of reactants in the preparation of the CA, and storage time of the CA on the water resistance of plywood panels bonded with SF–CA adhesives were investigated. The reaction time required for the completion of the reaction significantly decreased as reaction temperatures increased. The addition of NaOH to the SF–CA adhesive improved the water resistance and dry shear strength of the five-ply aspen panels. All plywood panels met the requirements for interior plywood when the CAs were prepared at 45–60 °C no matter whether the CA was heat-treated or not. Mixing ECH and ammonium hydroxide all at once resulted in better water resistance of the resulting plywood panels than adding either of ECH or ammonium hydroxide to the other dropwise. The viscosity of heat-treated CA was comparable to that of untreated CA when the CA was prepared at 50 °C. Both heat-treated and untreated CAs could be stored at room temperature for at least two months without compromising the water resistance of the resulting plywood panels.  相似文献   

9.
The phasing out of the use of urea–formaldehyde adhesive in the fabrication of interior‐used hardwood plywood requires development of environmentally friendly bio‐based wood adhesives. We recently reported that phosphorylation of soy flour (SF) using phosphoryl chloride (POCl3) greatly improved the moisture resistance of soy flour adhesive. In the present study, we investigated the effects of inorganic oxidizing agents, such as NaClO2 and Ca(NO2)2, to further improve the wet bonding strength of phosphorylated SF (PSF) wood adhesive. We report that addition of 1.8 % (wet weight basis) Ca(NO2)2 to phosphorylated SF (PSF) adhesive formulation containing 25 % soy flour solids increased the wet bonding strength to greater than 3 MPa at 140 °C hot‐press temperature. The water resistance testing of the glued three‐ply hardwood plywood panels passed the three‐cycle soak/dry test recommended by the American National Standard for Hardwood and Decorative Plywood/Hardwood Plywood and Veneer Association protocol (ANSI/HPVA HP‐1‐2004). Since the process involves only inorganic chemistry and no petroleum‐based chemicals such as formaldehyde or polyamidoamine–epichlorohydrin are used, the PSF + Ca(NO2)2 adhesive is non‐toxic and environmentally safe.  相似文献   

10.
An optimum amount of adhesive penetration is desirable for economy of production and development of bond strength in wood composites. A general method that allows quantitative measurement of gross adhesive penetration in wood is described. Staining techniques have been developed that can provide sharp contrast between a cured adhesive and the wood substrate using fluorescence microscopy. An image analysis system utilizes this contrast to quantify gross adhesive penetration in wood. An example of this technique is provided, whereby the effect of molecular weight distribution of phenol formaldehyde prepolymers on gross adhesive penetration into yellow poplar (Liriodendron tulipifera) flakes is observed and quantified. Adhesive penetration into wood flakes was shown to be correlated with the molecular weight distribution of the prepolymer, decreasing with higher weight average molecular weight. Gross adhesive penetration into hardwoods is likely to be dominated by flow into vessel elements, as demonstrated by the wood species studied here.  相似文献   

11.
Abstract

Irvingia seed kernels have been identified as potential raw materials for a wide range of applications such as biodiesel, cosmetics, perfume, and soap. As a result, the Irvingia wood species is earmarked for domestication globally in order to commercially exploit these potential benefits. This study investigated the physical and mechanical properties of experimental panels made with pine (Pinus elliottii) wood particles, using modified Irvingia gabonensis (IG) and Irvingia wombolu (IW) extracts as a binder. The mean values of modulus of rupture (MOR) and modulus of elasticity (MOE) for the panels produced with this Irvingia-based adhesive were 5.8 and 1251?MPa, respectively. These values are within the minimum requirement for MOR and MOE (5.5 and 1034?MPa, respectively) for panel grade 1-L-1 as specified by the American National Standards Institute A208.1. The results from the study show that Irvingia kernel extracts may be considered as a potential environmentally friendly adhesive for wood composite manufacture.  相似文献   

12.
A response surface model using a Box‐Behnken design was constructed to statistically model and optimize the material compositions‐processing conditions‐mechanical property relationships of formaldehyde‐free wood composite panels. Three levels of binding agent content, pressing time, and press temperature were studied and regression models were developed to describe and optimize the statistical effects of the formulation and processing conditions on the mechanical properties of the panels. Linear models best fit both the flexural strength (modulus of rupture [MOR]) and internal bond (IB) strength of the panels. Increasing any of the manufacturing variables resulted in greater MOR and IB strength. Flexural stiffness (modulus of elasticity [MOE]) was best described by a quadratic regression model. Increased MOE could be obtained through higher pressing times, binding agent concentrations, and/or pressing temperatures. However, binding agent concentration had less effect on increasing the MOE at higher pressing temperatures. Numerical optimization showed that formaldehyde‐free panels with desired mechanical properties could be manufactured at pressing temperatures ranging from 187.18 to199.97°C, pressing time from 3.31 to 8.83 minutes, and binding agent concentration from 7.66 to 11.86%. POLYM. COMPOS., 27:497–503, 2006. © 2006 Society of Plastics Engineers  相似文献   

13.
A new thermosetting wood adhesive system from pyrogallol has been developed. Pyrogallol can be easily obtained from tara pods (Caesalpinia spinosa) a native leguminosae of low cost widely distributed in Peru. In this work, polymerization of formaldehyde with pyrogallol was carried out at different pH values and optimal conditions were determined to establish the adhesive formulation. The reactivity of this resin was characterized by differential scanning calorimetry (DSC) and the results were compared with those obtained with resins made with tara tannin, gallic acid, and phenol. The results show that tara tannin and gallic acid are less reactive due to the presence of deactivating groups (i.e., carboxylates) in the phenolic moieties while their polymerization is limited to that of a bidimensional network upon curing. In contrast, pyrogallol–formaldehyde kinetic parameters (Ea and ΔH) were determined and they are comparable with those of phenol-formaldehyde adhesives. In addition, mechanical property values (MOR, MOE, and IB) of particleboards prepared with pyrogallol–formaldehyde compare favorably to those of Canadian standard requirements (CSA). Main assets of the new thermosetting adhesive is lower pressing times and temperatures than those currently used in the industry. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:399–408, 1997  相似文献   

14.
Soy Protein Adhesive Blends with Synthetic Latex on Wood Veneer   总被引:1,自引:0,他引:1  
Environmental pollution has prompted an interest in and a need for bio-based wood adhesives. Modified soy protein has shown adhesion properties similar to those of formaldehyde based adhesives. The objective of this research was to investigate the compatibility of a modified soy protein (MSP) with six commercial synthetic latex adhesives (SLAs). Four different blending ratios of MSP and SLAs were studied. Adhesion; structural change; and rheological, thermal, and morphological properties of the MSP/SLAs blends were characterized. Dry adhesion strength of MSP, SLAs and their blends were all similar with 100% wood cohesive failure. Water resistance of all six SLAs was improved by blending with MSP in terms of the wet adhesion strength. The wet adhesion strength of MSP/PBG (40/60) blends was 6.416 MPa, as compared to 4.66 MPa of pure PBG (press bond glue, urea formaldehyde based resin). Viscosity of MSP/SLAs blends was reduced significantly and reached the lowest value at 40–60% MSP. Infrared spectra, thermal properties, and morphological images indicated that chemical reactions occurred between soy protein and PBG molecules. The MSP provided some functional groups, such as carboxylic (–COOH), hydroxyl (–OH) and amino groups (–NH2), that cross-linked with hydroxymethyl groups (–CH2–OH) of PBG, and also acted as an acidic catalyst for the self-polymerization of urea formaldehyde based resin.  相似文献   

15.
A green‐chemistry approach to improve the moisture resistance of soy flour (SF)‐based wood adhesive is described. Chemical phosphorylation of SF (PSF), using POCl3 as the phosphorylating agent, dramatically increased its wet bond strength. The optimum POCl3:SF ratio that produced maximum wet bond strength was about 0.15 (g g?1). The increase in wet bond strength of PSF (PSF0.15) was mostly due to the phosphate groups incorporated into the proteins and carbohydrates, and to a lesser degree to phosphorylation‐induced protein denaturation. The attached phosphate groups acted as cross‐linking agents, either via covalent esterification with hydroxyl groups on wood chips or via ionic and hydrogen‐bonding interactions with functional groups in wood chips. At hot‐press temperatures above 160°C the wet bond strength of PSF0.15 was >2.6 MPa, a level that might be acceptable for interior‐used hardwood plywood and particleboard. POCl3 is a low cost, general‐purpose reagent and therefore PSF‐based adhesive is expected to be environmentally friendly. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40451.  相似文献   

16.
A novel adhesive that is solely based on natural materials of defatted soy flour (SF) and magnesium oxide (MgO) has been investigated for preparation of five‐ply plywood panels. The resulting plywood panels met the industrial water‐resistant requirement for interior plywood. In this study, mechanisms by which an aqueous mixture of SF and MgO served as a strong and water‐resistant adhesive for bonding wood were investigated. SF was first fractionated into soy protein isolates (SPI), a water‐soluble fraction, and insoluble carbohydrates (ICs) that were mixed with MgO, respectively, for preparation of maple laminates. The water resistance of the resulting maple laminates was evaluated by a three‐cycle water‐soaking‐and‐drying (WSAD) test and a two‐cycle boiling‐water test (BWT). The mixture of MgO and the soluble fraction was not able to bond maple veneers together. The shear strengths of the resulting maple laminates before and after WSAD and BWT all had the following order: MgO–SPI > MgO–SF > SF only > MgO–IC. The water solubility of SF in the heat‐cured SF–MgO mixture was much lower than that of the heat‐cured SF. We believe that the low water solubility of SF–MgO and close interactions between MgO and soy proteins instead of soy carbohydrates were responsible for the superior strengths and high water resistance of the soy‐MgO adhesive.  相似文献   

17.
Aqueous Extraction of Oil and Protein from Soybeans with Subcritical Water   总被引:2,自引:0,他引:2  
Aqueous extraction using subcritical water is an environmentally friendly alternative to extracting oil and protein from oilseeds with flammable organic solvents. The effects of solids-to-liquid ratio (1:3.3–1:11.7), temperature (66–234 °C), and extraction time (13–47 min) were evaluated on the extraction of oil and protein from soybean flakes and from extruded soybeans flakes with subcritical water. A central composite design (23) with three center points and six axial points was used. Subcritical water extractions were carried out in a 1-L high-pressure batch reactor with constant stirring (300 rpm) at 0.03–3.86 MPa. In general, oil extraction was greater for extruded soybean flakes than with soybean flakes. More complete oil extraction for extruded soybean flakes was achieved at around 150 °C and extraction was not affected by solids-to-liquid ratios over the range tested, while oil extraction from soybean flakes was more complete at 66 °C and low solids-to-liquid ratio (1:11.7). Protein extraction yields from flakes were generally greater than from extruded flakes. Protein extraction yields from extruded flakes increased as temperature increased and solids-to-liquid ratio decreased, while greater protein extraction yields from soybean flakes were achieved when using low temperatures and low solids-to-liquid ratio.  相似文献   

18.
Heat treatment is a well-known method for modifying wood that is applied in different ways, and treatment schedules change from tree to tree. This treatment improves the physical properties of wood but, in general, it reduces the mechanical properties of wood. The effects of heat treatment on the mechanical properties of juvenile and mature wood of the same tree species have not been well-defined. Therefore, we focused our study on the differences in the mechanical properties of juvenile wood and mature wood of Eucalyptus grandis after both were subjected to heat treatment. Wood samples were treated at temperatures of 120, 150, and 180°C for 4, 6, and 8 h. The test results showed that decreases in the mechanical properties of juvenile wood (e.g., modulus of elasticity (MOE), modulus of rupture (MOR), compression strength (CS), and impact bending (IB)) were greater than the decreases that occurred in mature wood that was heat treated at the same conditions.  相似文献   

19.
Wood adhesive system based on hyperbranched polyglycerol cross-linked with hexamethoxymethyl melamines was described. The obtained results showed that it was possible to develop polyglycerol-based interior-grade adhesive exhibiting dry shear strengths of the joints exceeding that of the solid wood. Gelling times of the studied formulations were comparable to those of the industrial thermosetting systems (60–80 s at 100 °C). It was also found that wet shear strengths depended on functionality and F/Me molar ratio in the cross-linking resin.  相似文献   

20.
Abstract

Kraft (LN-T-CO2-2) and wheat straw (CIMV) glyoxalated lignin mixed with mimosa tannin and hexamine as a hardener were used as wood adhesive resins in particleboard fabrication. The adhesive systems proportion used were 40/60 and 50/50 w/w for lignin and tannin, respectively. The gel time test was determined by knowing the polymerization time between the different mixes under the controlled conditions. The results showed a slower polymerization with the kraft lignin/mimosa tannin blending than with the wheat straw lignin/mimosa tannin one. Thermomechanical analyses (TMA) tests were carried out as an indication of the final strength of the adhesive systems revealed by the elasticity modulus (MOE). The MOE results have demonstrated the best mechanical resistance values in 40/60 lignin/mimosa tannin proportion with respectively 3.422 and 3.347 (MPa), for CIMV and LN-T-CO2-2, and 2.122 (MPa) for 50/50 proportion. Particleboards were prepared and the internal bond (IB) tests were carried out according to the European Standard EN 312. The IB tests confirmed the TMA results. The higher mechanical results of the IB were .43 and 0.53 (MPa), for CIMV and LN-T-CO2-2 lignin in a 40/60 lignin/mimosa tannin proportion. They were classified as interior panel P2 in according with the standard request EN-312. Free-formaldehyde was determined through the flask method EN 717-3. Particleboards prepared with these natural adhesive resins registered emissions at least 87 and 75% lower than the commercial UF and MUF dhesive resins. The panels were classified as E0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号