首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This investigation highlights the rationale of adhesive bonding of atmospheric pressure plasma treated high temperature resistant polymeric sheet such as polyimide sheet (Meldin 7001), with titanium sheets. The surface of polyimide (PI) sheet was treated with atmospheric pressure plasma for different exposure times. The surface energy was found to increase with increase in exposure time. However, longer exposure time of plasma, results in deterioration of the surface layer of PI resulting in degradation and embrittlement.Contact angle measurements with sessile drop technique were carried out for estimation of surface energy. SEM (EDS) and AFM analyses of treated and untreated specimens were carried out to examine the surface characteristics and understanding morphological changes following surface treatment. Untreated samples and atmospheric pressure plasma treated samples of polyimide Meldin 7001 sheet were bonded together as well as with titanium substrates to form overlap joints. Single lap shear tensile testing of these adhesively bonded joints was performed to measure bond strength and to investigate the effect of surface treatment on adhesive bond strength. An optimized plasma treatment time results in maximum adhesive bond strength and consequently, this technology is highly acceptable for aviation and space applications.  相似文献   

2.
High performance polymer, Polyether Ether Ketone (PEEK) (service temperature ?250°C to +300°C, tensile strength: 120 MPa) is gaining significant interest in aerospace and automotive industries. In this investigation, attention is given to understand adhesion properties of PEEK, when surface of the PEEK is modified by two different plasma processes (i) atmospheric pressure plasma and (ii) low pressure plasma under DC Glow Discharge. The PEEK sheets are fabricated by ultra high temperature resistant epoxy adhesive (DURALCO 4703, service temperature ?260°C to +350°C). The surface of the PEEK is modified through atmospheric pressure plasma with 30 and 60 s of exposure and low pressure plasma with 30, 60, 120, 240, and 480 s of exposure. It is observed that polar component of surface energy leading to total surface energy of the polymer increases significantly when exposed to atmospheric pressure plasma. In the case of low pressure plasma, polar component of surface energy leading to total surface energy of the polymer increases with time of exposure up to 120 s and thereafter, it deteriorates with increasing time of exposure. The fractured surface of the adhesively bonded PEEK is examined under SEM. It is observed that unmodified PEEK fails essentially from the adhesive to PEEK interface resulting in low adhesive bond strength. In the case of surface modified PEEK under atmospheric pressure plasma, the failure is entirely from the PEEK and essentially tensile failure at the end of the overlap resulting in significant increase in adhesive bond strength. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
This investigation highlights rationale to synthesize epoxy–novolac adhesive by novel interpenetrating network (IPN) technique. Physicochemical characteristics of the plain adhesive and IPN adhesive were carried out by Fourier transform infrared spectroscopy and thermal gravimetric analysis. Performing lap-shear test carried out plasma-nitrided titanium was fabricated with these adhesives and mechanical property of these adhesives. The blend of epoxy and novolac was optimized at 4:1 ratio, and the formation of IPN was confirmed by the suppression of creep with reference to neat epoxy and its swelling behavior. The adhesive with IPN shows significantly higher thermal stability than epoxy and leaves higher amount of residuals at the elevated temperature. Due to surface modification of titanium by plasma nitriding, wetting characteristics of titanium increases considerably and consequently, there was a significant increase in lap-shear strength adhesively of bonded titanium substrate.  相似文献   

4.
This investigation highlights the adhesion performance of carbon fiber‐ and glass fiber‐reinforced polyphenylene sulfide when joined by high‐performance neat epoxy adhesive and nanofilled epoxy adhesive. A significant increase in the surface energy of these materials is observed after the surface modification with atmospheric plasma treatment. An increase in surface roughness is observed after exposing the surface to plasma. Lap shear testing of untreated and plasma‐treated joints is carried out to correlate the improvement in adhesion properties with the joint strength. A considerable increase in joint strength is observed when the surfaces of these materials are modified by atmospheric pressure plasma. There is a further increase in joint strength when the composites are joined by nanofilled epoxy adhesive, and subsequent exposure to electron beam radiations results in minor increase in the joint strength. Finally, the fractured surfaces of the joints are examined and the analysis is performed. POLYM. ENG. SCI., 50:1505–1511, 2010. © 2010 Society of Plastics Engineers  相似文献   

5.
In this study, the adhesion properties of adhesives and paints on wood–plastic composites (WPCs) after plasma treatment at atmospheric pressure and ambient air were investigated. Surface energy determination by means of contact angle measurements according to the Owens–Wendt approach and atomic force microscopy to detect changes in surface topography were carried out. An increase in the polar component of surface energy and an increase in surface roughness after plasma treatment were detected, indicating enhanced bond strength. To confirm these results, bond strength tests were conducted. By tensile bond strength tests, increased adhesion of waterborne, solventborne and oil-based paints on plasma treated surfaces was found. Furthermore, by shear bond strength tests, an increase in bond strength of plasma treated WPCs bonded with poly(vinyl acetate) and polyurethane adhesives was ascertained.  相似文献   

6.
In this in vitro study, the effects of different surface preparations and resins on the strength and durability of adhesively bonded joints were evaluated. Disk-shaped cobalt-chromium substrate samples of the first group were treated by the Silicoater MD® system. Samples of the two subgroups were bonded with two different bisphenol-A glycidyl methacrylate (Bis-GMA) adhesives. Samples of the second group were treated by the Rocatec®) system and bonded with a Bis-GMA adhesive. Alumina-blasted samples of the third group were bonded with two different types of Bis-GMA adhesive modified with a phosphate monomer. Samples were stored in water for 3 days, or thermocycled and stored in water for 6 months. The joint samples were then tested for tensile bond strength. When the alumina-blasted samples were bonded with Panavia Ex® or Panavia 21® adhesive the highest bond strength was obtained, regardless of the storage conditions. The Silicoater MD method in combination with the Bis-GMA adhesive yielded high initial bond strengths comparable to those obtained with the Panavia systems, but also recorded the highest drops in bond strengths with both types of adhesive after thermal stressing and water storage. The Rocatec system in combination with Nimetic Grip adhesive produced a low but stable bond strength even after thermocycling and water storage.  相似文献   

7.
This paper presents a study on the effect of surface treatments on the mechanical behavior of adhesively bonded titanium alloy joints. Several different treatments were selected for the preparation of Ti-6Al-4V alloy faying surfaces, and bonded joints were fabricated using surface-treated titanium alloy substrates and a film adhesive. Tensile tests were performed on single-lap specimens to evaluate the joint strength and to assess the failure mode, i.e. cohesive failure, adhesive (interfacial) failure or a mix of both. Contact angle measurements were also carried out, and the surface free energies of titanium alloys and the thermodynamic works of adhesion for the adhesive/titanium alloy interfaces were obtained. A three-dimensional finite element analysis was used to predict the strength of the specimens exhibiting cohesive failure. In addition, an expression of the relationship between the joint strength corresponding to interfacial failure and the thermodynamic work of adhesion was introduced based on the cohesive zone model (CZM) concept. It is shown that two surface treatments, Itro treatment and Laseridge, lead to cohesive failure and a significant increase in the joint strength, and the numerically predicted strength values are fairly close to the experimental values. These surface treatments are possible replacements for the traditional surface treatment processes. For degreasing, emery paper abrasion, atmospheric plasma treatment, sulfuric acid anodizing, nano adhesion technology and high-power lasershot, the specimens fail at the adhesive/substrate interface and the joint strength increases linearly with the thermodynamic work of adhesion as expected from our CZM-based expression.  相似文献   

8.
In Memoriam     
The surface modification and adhesive bonding of a carbon fiber reinforced plastic (CFRP) composite has been investigated. Wettability studies showed that plasma-treated specimens provide a significant increment in the surface energy, relative to untreated material. The surface modification resulted in significantly improved adhesion between the composite and an applied toughened acrylic adhesive; a considerable increase in fracture energy was observed following grit blasting and grit blasting plus silane treatments. Specimens treated with atmospheric plasma showed a slight increment in fracture energy, usually failing adhesively. The durability was tested using a wedge test. Specimens degreased and treated with atmospheric plasma showed the greatest crack growth and failed in an adhesive mode.  相似文献   

9.
Since the surface roughness of adherends greatly affects the strength of adhesively bonded joints, the effect of surface roughness on the fatigue life of adhesively bonded tubular single lap joints was investigated analytically and experimentally by a fatigue torsion test. The stiffness of the interfacial layer between the adherends and the adhesive was modelled as a normal statistical distribution function of the surface roughness of the adherends. From the investigation, it was found that the optimum surface roughness of the adherends for the fatigue strength of tubular single lap joints was dependent on the bond thickness and applied load.  相似文献   

10.
The use of adhesive bonding for high temperature applications is becoming more challenging because of low thermal and mechanical properties of commercially available adhesives. However, the development of high performance polymers can overcome the problem of using adhesive bonding at high temperature. Polybenzimidazole (PBI) is one such recently emerged high performance polymer with excellent thermal and mechanical properties. It has a tensile strength of 160 MPa and a glass transition of 425 °C. Currently, PBI is available in solution form with only 26% concentration in Dimethyl-acetamide solvent. Due to high solvent contents, the process optimization required lot of efforts to form PBI adhesive bonded joints with considerable lap shear strength. Therefore, in present work, efforts are devoted to optimize the adhesive bonding process of PBI in order to make its application possible as an adhesive for high temperature applications. Bonding process was optimized using different curing time and temperatures. Epoxy based carbon fiber composite bonded joints were successfully formed with single lap shear strength of 21 Mpa. PBI adhesive bonded joints were also formed after performing the atmospheric pressure plasma treatment of composite substrate. Plasma treatment has further improved the lap shear strength of bonded joints from 21 MPa to 30 MPa. Atmospheric pressure plasma treatment has also changed the mode of failure of composite bonded joints.  相似文献   

11.
The applications (and repair) of glass fiber reinforced epoxy composites are increasing in different industries (wind turbines, boats, chassis of buses, etc.) due to specific strength and low cost. Their major disadvantage is the difficulty to shape complex components. This problem can be solved manufacturing different parts, being adhesively bonded afterwards. This work studies the effect of atmospheric pressure plasma torch compared to grit-blasting to improve adhesion. After surface treating different parts, the changes of wettability and surface energy were measured. Treated samples were bonded with polyurethane and epoxy adhesives, and the quality of the bond was evaluated using pull-off adhesion tests and fracture strength test under cleavage loads. Obtained results allow to select the most adequate treatment in terms of mechanical requirements.  相似文献   

12.
Ti-6A1-4V/FM-5 polyimide adhesively bonded double cantilever beam (DCB) specimens were aged for 12 months at elevated temperatures (177°C and 204°C) in one of three different environments: ambient atmospheric air pressure and reduced air pressures of 2 psi (13.8 kPa) and 0.2 psi (1.38 kPa), to assess bond durability. The FM-5 polyimide adhesive (Tg~ 250°C) is based on a polyimide developed by NASA Langley Research Center and is produced by Cytec Industries, Inc. Bonds aged for different times were tested to measure the critical strain energy release rate as a function of the temperature and environment. The greatest loss in bond strength occurred after aging in air at 204°C. Following thermal rejuvenation of the aged bonds at 300°C for 2 h, part of the strength loss could be recovered. This strength recovery was attributed to the reversal of physical aging in the adhesive resin. Further evidence for physical aging, which is a thermo-reversible phenomenon, was obtained from tests conducted on neat resin specimens using DMA (dynamic mechanical analysis) and DSC (differential scanning calorimetry). The unrecovered portion of the loss in bond strength following longer-term aging was attributed to chemical aging/degradation of the bonded 'system'. The 'system' in this study includes the adherends, the adhesive, the surface pretreatment (chromic acid anodization, CAA), and their respective interphase/interface regions. Evidence for chemical aging was also seen from weight loss, and Soxhlet extraction data on neat resin specimens.  相似文献   

13.
This work deals with an experimental investigation on the effect of mechanical surface treatments of adhesive bonded joints. The behaviour of an adhesively bonded joint can be considered good if cohesive failure is achieved, while when interfacial failure occurs the performances are normally much worse. A key parameter which drives the failure type is the surface treatment applied to the adherends. This work analyzes, by means of a structured experimental campaign, which surface mechanical treatment gives the best performance. The design of the experimental approach used involves different materials, joint geometries, and surface treatments. The results are investigated in terms of force, energy, and stresses in the joints and the performance of the several mechanical treatments tested is assessed, showing that a simple correlation with the surface roughness is not sufficient to predict the best joint performances. The reliable results obtained prove that sandpapering or sandblasting the adherends gives a strong improvement in terms of performance and leads to a higher probability of cohesive failure.  相似文献   

14.
The effect of atmospheric plasma treatment (APT) on the bonding performance of a cyanate ester and an epoxy carbon fiber reinforced composite fabricated with a polyester peel ply was evaluated. A room temperature (RT) cured epoxy, an elevated temperature cured epoxy, and a cyanate ester resin, were used as the bonding adhesives. Only small increases in the carboxyl species concentration were observed for both composite systems as a function of increasing plasma treatment. Lap shear (LS) tests of the bonded composites showed that the APT resulted in a 30% strength improvement for the RT cured epoxy bonded specimens while the cyanate ester composite exhibited negligible increases due to the formation of a highly oxidized, weakly bonded ash. Contact angle measurements indicated that the temperature exposure associated with the curing of the elevated temperature adhesives also reduced the efficacy of APT. Modifications of the bonding surface of these composites by the incorporation of a plasma responsive (PR) layer resulted in significant LS improvements. After incorporating the PR layer, the improvement in adhesive strength was over 225% that of an untreated specimen and approximately 190% that of the equivalently treated unmodified system. Bond strengths correlated with corresponding increases in carboxyl concentrations after APT.  相似文献   

15.
An assessment of innovative adhesive bonding process has been performed with regard to quality and cost. In this frame, the effect of two different atmospheric pressure plasma surface treatment conditions on the fracture toughness behaviour of adhesively bonded joints was experimentally investigated. Furthermore, the mechanical performance of a newly developed aerospace structural adhesive has been characterised experimentally in order to assess the quality of the bonded elements. To assess the feasibility of the new process, a complete cost-estimation analysis of the process has been carried out based on the activity-based costing modelling approach, thus serving to the estimation of the total cost/duration of the process. To this end, the newly developed process is assessed with regard to quality and cost. It could be shown that the new process offers tempting alternatives to the existing adhesive bonding and joining processes used in the aeronautic industry.  相似文献   

16.
The present investigation focuses on modifying the strength of single-lap adhesively bonded joints under tension–torsion loading with the use of three-dimensional finite element (FE) modeling. A single-lap adhesively bonded joint is reinforced by fibers and analyzed by means of ABAQUS-6.9.1 FE code. The adherends are considered to be made of orthotropic materials, while the adhesive is neat resin or reinforced by various types of fibers. The carbon and glass unidirectional fibers are used for adhesive reinforcement. In the FE modeling, the behavior of all the members is assumed to be linear elastic. The ultimate bond strength is increased as the fiber volume fraction in the adhesive is increased. By changing the properties and the behavior of the adhesive from neat resin (isotropic) to fiber composite adhesive (orthotropic) and with various fiber volume fractions and by changing the orientation of the fibers in the adhesive region with respect to the global axes, the bond strength in tension–torsion loadings are changed. Also, the excessive adhesive layer is modeled and its effect on the joint strength is investigated.  相似文献   

17.
During manufacturing or service conditions, adhesively bonded composites are often subjected to impact. This impact may result in a reduction in strength and structural integrity of engineering components that are composed of adhesively bonded composite structures. The investigation of the degradation of strength of structural joints is, therefore, of paramount importance for their successful performance. Impact resistance of bondline in adhesively joined composites can be altered by the addition of nanoclay in the adhesive during fabrication of adhesive joints. In this study, impact test was carried out on graphite–epoxy composite panels bonded with nanoclay adhesive at different impact energies using drop-weight impact test equipment. Adhesive joints were fabricated by adding nanoclay in volume fractions of 1, 2 and 5% in the adhesive bondline. For comparison, plain adhesive joints were fabricated without nanoclay incorporation in the bondline. Impact testing was performed on these joints at 5, 10 and 20 J, to study the effect of inclusion of nanoclay in the epoxy adhesive. In order to determine the flexural load bearing capacity and stiffness reduction after impact, a three-point bending test was conducted on unimpacted and impacted specimens. The results showed that there was an improvement in impact capacity, however there was a reduction in flexural strength due to nanoclay incorporation.  相似文献   

18.
In this article, the effects of atmospheric plasma treatment on the microstructural, chemical, and mechanical behavior of epoxy‐bonded polycyanurate composites are investigated. Adhesive bond strength of plasma‐treated specimens exhibited strength increases of over 35% to that of peel‐ply and solvent‐wiped surface preparation techniques. The improvements were as much as 50% greater than those obtained using abrasive surface preparation techniques. X‐ray photoelectron spectroscopy analysis showed an increase in the surface concentration of oxygen as a function of plasma treatment passes. However, the levels were substantially lower than that of epoxy composites treated under identical conditions. In addition, the concentration of carboxyl groups (O CO), which have been associated with improved adhesive strength in epoxy‐based composites, was shown to saturate in cyanate ester composites after a much lower exposure period than what was observed when treating epoxies. The effect of plasma surface treatment on the surface morphology of the cyanate ester composite was also studied using scanning electron microscopy and atomic force microscopy. Atomic force microscopy analysis showed a progressive increase in surface roughness with treatment; however, this increase only translated into a marginal increase in surface area and is not believed to contribute significantly to adhesive strength. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
In this investigation, attempts are made to modify a high‐performance polymer such as polybenzimidazole (PBI) (service temperature ranges from ?260°C to +400°C) through high‐energy radiation and low‐pressure plasma to prepare composite with the same polymer. The PBI composites are prepared using an ultrahigh temperature resistant epoxy adhesive to join the two polymer sheets. The service temperature of this adhesive ranges from ?260°C to +370°C, and in addition, this adhesive has excellent resistance to most acids, alkalis, solvents, corrosive agents, radiation, and fire, making it extremely useful for aerospace and space applications. Prior to preparing the composite, the surface of the PBI is ultrasonically cleaned by acetone followed by its modification through high‐energy radiation for 6 h in the pool of a SLOWPOKE‐2 (safe low power critical experiment) nuclear reactor, which produces a mixed field of thermal and epithermal neutrons, energetic electrons, and protons, and γ‐rays, with a dose rate of 37 kGy/h and low‐pressure plasma through 13.56 MHz RF glow discharge for 120 s at 100 W of power using nitrogen as process gas, to essentially increase the surface energy of the polymer, leading to substantial improvement of its adhesion characteristics. Prior to joining, the polymer surfaces are characterized by estimating surface energy and electron spectroscopy for chemical analysis (ESCA). To determine the joint strength, tensile lap shear tests are performed according to ASTM D 5868–95 standard. Another set of experiments is carried out by exposing the low‐pressure plasma‐modified polymer joint under the SLOWPOKE‐2 nuclear for 6 h. Considerable increase in the joint strength is observed, when the polymer surface is modified by either high‐energy radiation or low‐pressure plasma. There is further significant increase in joint strength, when the polymer surface is first modified by low‐pressure plasma followed by exposing the joint under high‐energy radiation. To simulate with spatial conditions, the joints are exposed to cryogenic (?196°C) and high temperatures (+300°C) for 100 h. Then, tensile lap shear tests are carried out to determine the effects of these environments on the joint strength. It is observed that when these polymeric joints are exposed to these climatic conditions, the joints could retain their strength of about 95% of that of joints tested under ambient conditions. Finally, to understand the behavior of ultrahigh temperature resistant epoxy adhesive bonding of PBI, the fractured surfaces of the joints are examined by scanning electron microscope. It is observed that there is considerable interfacial failure in the case of unmodified polymer‐to‐polymer joint whereas surface‐modified polymer essentially fails cohesively within the adhesive. Therefore, this high‐performance polymer composite could be highly useful for structural applications in space and aerospace. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1959–1967, 2006  相似文献   

20.
Structural adhesives are widely used in industrial applications dealing with the problem of assembly and bonding. Despite the several advantages brought by this technique, one of the main issue is represented by the need of the surface to be mechanically and/or chemically treated with the aim to make it suitable for the adhesive deposition. Previous works demonstrate how the surface treatment by laser ablation seems to enhance the joint strength with respect to the untreated material. In particular, the effect of pulsed Yb-laser ablated aluminium surfaces over the mode I energy release rate of Double Cantilever Beam (DCB) specimens was investigated and a significant growth of the fracture toughness compared with the untreated and the grit blasted joints was observed. In this work, an investigation concerning the durability of the mechanical properties of aluminium joints treated with several representative parameters configurations was conduced. These setting configurations were used in an experimental campaign with the aim of verifying their suitability varying the type of the test (fatigue tests) and the environmental conditioning of the specimens (quasi-static tests after ageing cycles). Concerning the fatigue behavior, the ranking of the laser parameters configuration according to the increase of toughness with respect the degreased and the grit blasted samples seemed quite consistent with the results obtained in the quasi-static test campaign. When an accelerated ageing cycle in control of temperature and relative humidity was applied, a general lowering of toughness affected every tested specimen. This effect was however more marked in the grit blasted sample than in the laser treated ones. Therefore, a relative improvement of the mechanical performance when using some laser ablation configurations instead of the grit blasting, under the same conditions, when the adhesively bonded joints were aimed to undergo some critical environmental exposure, was recorded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号