首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
采用溶剂热法制备了Fe3O4磁性微球,利用凝胶法对Fe3O4包覆Si O2,用3-氨丙基三乙氧基硅烷修饰Fe3O4@Si O2,制备氨基功能化磁性微球。采用扫描电镜(SEM)和傅里叶红外吸收光谱仪(FT-IR)对所制备的氨基功能化磁性微球进行表征。将氨基功能化磁性微球作为辣椒碱的磁固相萃取材料,对辣椒碱进行了吸附性能实验。结果表明,在辣椒碱浓度为20μg·mL-1、吸附剂用量为40 mg、温度为20℃的条件下,氨基功能化磁性微球的最大吸附量为31.58mg·g-1。  相似文献   

2.
以甲基丙烯酸和丙烯酰胺为功能单体,通过悬浮聚合法制备了氨基和羧基双功能化的磁性复合微球(Fe3 O4@SiO2-NH2/COOH),并探讨了其对水溶液中Cd(Ⅱ)和Pb(Ⅱ)的吸附性能.X-射线衍射(XRD)分析表明,制备的磁性吸附剂内核为Fe3 O4.红外光谱(FT-IR)和扫描电镜(SEM)测试表明,氨基和羧基对Fe3 O4@SiO2表面改性成功.吸附试验显示,Fe3O4@SiO2-NH2/COOH吸附Cd(Ⅱ)和Pb(Ⅱ)的最优pH值分别为5.0和5.5,吸附过程均符合动力学准二级模型和Langmuir吸附等温模型,吸附剂对Cd(Ⅱ)和Pb(Ⅱ)最大吸附量分别为207.807 mg/g和168.995 mg/g.实际饮用水样中Cd(Ⅱ)和Pb(Ⅱ)的吸附表明,去除率分别可达97.74%和91.44%.该磁性吸附剂对两种重金属离子吸附量大、去除率高,具有良好的实际应用潜力.  相似文献   

3.
以(NH4)2Fe(SO4)2.6H2O、NH4Fe(SO4)2.12H2O和壳聚糖为原料,经羟丙基化、氨基化,采用一步包埋法制备了一种新型的多氨基化磁性壳聚糖微球。并通过正交实验确定了改性磁性微球的最佳制备条件,即搅拌速度1200 r/min,壳聚糖用量3.0g,环氧氯丙烷用量5.0mL,乙二胺用量2.5mL。用荧光显微镜对其结构及形貌进行了观察。结果表明,Fe3O4磁性粒子已包埋了一层氨基化壳聚糖。改性磁性微球氨基含量为3.60mmol/g;呈较规则的球形,平均粒径为211.6nm。讨论在最佳条件下制备的壳聚糖微球对污水中Cu2+和Pb2+的吸附能力。  相似文献   

4.
以粗孔微球硅胶为载体,采用浸渍法负载ZrOCl2,然后用氨水将ZrOCl2转化为ZrO(OH)2,得到ZrO(OH)2/SiO2吸附剂,研究其对水溶液中磷酸盐的吸附。单独使用粗孔微球硅胶作为吸附剂时对磷酸根没有任何吸附作用。单独使用ZrO(OH)2·2.6H2O(用量0.1g)作为吸附剂时60min吸附量为120.4mg PO43-/g,以纯ZrO(OH)2计的吸附量为160.3mg PO43-/g,当ZrO(OH)2/SiO2负载量为10%时,用量为0.5g,在相同条件下吸附量为36.4mg PO43-/g,以纯ZrO(OH)2计的吸附量为364.3mg PO43-/g。吸附动学实验表明吸附过程符合准二级动力学模型。  相似文献   

5.
合成了一种琥珀酸酐改性果胶-四氧化三铁(Fe3O4)磁性微球吸附剂,分别采用扫描电镜(SEM)、红外光谱(FT-IR)、X射线衍射(XRD)等手段对样品进行了表征,并研究了其吸附铅离子(Pb 2+)的性能。研究结果表明:成功制备了琥珀酸酐改性果胶-Fe3O4磁性微球,改性果胶包覆四氧化三铁几乎没有改变Fe3O4的尖晶石结构,其表面疏松多孔;改性果胶-Fe3O4磁性微球对铅离子的吸附符合准二级动力学方程、Langmuir等温吸附方程,吸附过程主要为化学吸附。最佳吸附条件:吸附时间为600 min,吸附温度为40 ℃,溶液pH为5,吸附剂添加量为20 mg,溶液中Pb 2+质量浓度为800 mg/L。改性果胶-Fe3O4磁性微球吸附剂用于脱除毛蚶子、扇贝酶解液中的Pb 2+,Pb 2+去除率分别为76.47%和80.34%,效果良好。  相似文献   

6.
木薯淀粉磁性微球的结构表征及其对溶菌酶的吸附性能   总被引:1,自引:0,他引:1  
磁性微球是高分子材料与磁性物质通过一定作用复合而成的一类具有特殊功能的磁性高分子微球。以木薯淀粉为原材料,复合共沉淀法制备的改性磁流体Fe3O4,采用两步法(化学交联法)制备木薯淀粉磁性微球。利用傅里叶变换红外光谱仪、X射线衍射仪、同步热分析仪、扫描电镜、激光粒度仪、磁天平等对其性能及结构进行表征并研究其对溶菌酶的吸附行为。通过单因素法考察磁性微球用量、溶液pH值、吸附温度、吸附时间对吸附率的影响,并采用准一级动力学模型和准二级动力学模型研究其吸附动力学。结果表明:制备的木薯淀粉磁性微球Fe3O4含量为19.71%,D50(中位径)为15.40μm,磁化率为1.571×10-3cm3/g,形貌规整;在微球用量为1.25g,溶液pH=10,吸附温度为25℃,吸附时间为80min时,微球对溶菌酶的吸附率最高,达到84.67%。以相关系数R2为参考,准二级动力学模型(R2=0.99993)较准一级动力学模型(R2=0.99174)、颗粒内扩散模型(R2=0.69996)能更好描述木薯淀粉磁性微球对溶菌酶的吸附行为。  相似文献   

7.
本文提出了将海藻酸钠和纳米Fe3O4以物理共混的方法,制备一定粒度的磁性海藻酸钠凝胶球.以持久性有机污染物甲基橙(methyl orange,简写MO)为研究对象,考察了初始pH值、磁性凝胶球的加入量、MO初始浓度和吸附时间等因素对吸附效果的影响;同时对吸附过程进行等温式和动力学拟合,初步分析了吸附机理.结果表明:利用纳米Fe3O4比表面积大和表面原子配位不足的特点,制备的磁性凝胶球对MO的吸附率可达90%以上;磁性凝胶球对持久性污染物MO的吸附遵循Langmuir等温方程和准二级反应动力学,说明吸附过程为单分子层吸附和化学吸附作用为主.在外加磁场作用下,纳米Fe3O4粒子超顺磁性有助于吸附剂能快速有效地从液相分离.经4次重复使用后,磁性凝胶球对MO仍具有很好的吸附效果,可进行多次重复使用.  相似文献   

8.
研究了磁性淀粉微球对Ni(Ⅱ)的吸附性能。考查了在常温条件下,反应时间、Ni(Ⅱ)的初始浓度、磁性淀粉微球的用量等对吸附性能的影响。探讨了磁性淀粉微球对Ni(Ⅱ)的吸附热力学和吸附动力学行为。结果表明:Ni(Ⅱ)为80mg/L,磁性淀粉微球用量为30mg时,在常温下经过80min的振荡吸附,磁性淀粉微球对Ni(Ⅱ)饱和吸附量达到11.69mg/g;吸附热力学表明磁性淀粉微球对Ni(Ⅱ)的吸附行为符合Freundlich方程;磁性淀粉微球对Ni(Ⅱ)离子的吸附过程可用准一级和准二级动力学模型进行模拟,但更符合二级动力学方程。  相似文献   

9.
采用溶剂热法来合成Fe3O4@MIL-100(Fe)纳米材料,通过红外光谱、扫描电子显微镜、透射电子显微镜、能谱和磁性等多种方法表征测试。从测试结果能够得知MIL-100(Fe)成功包覆在Fe3O4上。用Fe3O4@MIL-100(Fe)纳米材料作为吸附剂吸附亚甲基蓝溶液,考察了振荡时间、溶液pH、吸附剂用量、亚甲基蓝水试剂浓度等因素对吸附过程的影响。结果表明:振荡时间为40 min、pH为8、Fe3O4@MIL-100(Fe)微球用量为4 mg、亚甲基蓝水试剂浓度为6 mg·L-1时为最佳条件,最大饱和吸附量为9.688 6 mg·g-1。此外动力学与热力学结果表明室温下利于反应进行且符合准一级动力学模型。  相似文献   

10.
以马来松香乙二醇丙烯酸酯和甲基丙烯酸为单体,Fe3O4为磁源,通过悬浮聚合和酰胺化反应制备出松香基磁性微球。利用热重分析仪、红外光谱、比表面积与孔隙度分析仪、扫描电镜及磁天平对磁性微球进行表征,并通过静态吸附法研究了其对Cr(Ⅵ)的吸附性能。结果显示:松香基磁性微球既具有顺磁性(磁化率为9.123×10-4 cm3/g),又具有功能基团(氨基),比表面积、孔体积和平均孔径分别为29.73 m2/g、0.396 cm3/g和18.023 nm,表面和内部均有大量孔洞。当磁性微球粒径为72~108 μm时,在50 mL质量浓度为0.5 g/L Cr(Ⅵ)溶液中,调节pH值为2,吸附剂用量为0.8 g,25 ℃下振荡吸附,吸附平衡时间为4 h时,平衡吸附量为67.5 mg/g。动力学方程拟合结果显示吸附速率符合准一级动力学方程,吸附过程受液膜扩散和颗粒内部扩散共同影响。磁性微球循环使用5次,去除率仍达第一次吸附的85%以上,具有很好的循环使用性能。  相似文献   

11.
彭晓丽  张蔚霞  徐芳 《化学世界》2013,54(3):145-147,151
自制得到磁性Fe3O4/Beta沸石复合材料,并通过SEM、XRD、FT IR,磁滞回线表征鉴定,相应最佳吸附除磷实验条件为:0.05g磁性Fe3O4/Beta沸石复合材料对5mL,50mg/L PO34-溶液(pH值为3.0)吸附率近100%,吸附平衡时间为6h,吸附行为符合Freundlich方程,可在碱性介质溶液中脱附再生。磁性Fe3O4/Beta沸石复合材料基于磁基质易于水体分离操作,过程简便可控,实际应用前景广阔。  相似文献   

12.
研究了风化煤对磷矿酸解反应体系中Ca2 、Fe3 、Al3 及H2PO4-的吸附特性.实验表明:风化煤吸附上述4种离子从易到难的顺序及最大吸附量从大到小的顺序均为:Fe3 、Ca2 、Al3 、H2PO4-;吸附等温方程均符合Langmuir方程,且相关性显著.为探讨风化煤对磷矿转化率的影响和生产生态型磷肥提供了理论基础.  相似文献   

13.
A facile method for synthesis of the magnetic Fe_3O_4 nanoparticles was introduced.Magnetic nanoparticles were prepared via co-precipitation method with(PMF) and without(AMF) 0.15 T static magnetic field.The effects of magnetic field on the properties of magnetic nanoparticles were studied by XRD,TEM,SEM,VSM and BET.The results showed that the magnetic field in the co-precipitation reaction process did not result in the phase change of the Fe_3O_4 nanoparticles but improved the crystallinity.The morphology of Fe_3O_4 nanoparticles was varied from random spherical particles to rod-like cluster structure.The VSM results indicated that the saturation magnetization value of the Fe_3O_4 nanoparticles was significantly improved by the magnetic field.The BET of Fe_3O_4nanoparticles prepared with the magnetic field was larger than the control by 23.5%.The batch adsorption experiments of Mn(Ⅱ) on the PMF and AMF Fe_3O_4 nanoparticles showed that the Mn(II) equilibrium capacity was increased with the pH value increased.At pH 8,the Mn(Ⅱ) adsorption capacity for the PMF and AMF Fe_3O_4 was reached at 36.81 and 28.36 mg·g~(-1),respectively.The pseudo-second-order model fitted better the kinetic models and the Freundlich model fitted isotherm model well for both PMF and AMF Fe_3O_4.The results suggested that magnetic nanoparticles prepared by the magnetic field presented a fairly good potential as an adsorbent for an efficient removal of Mn(Ⅱ) from aqueous solution.  相似文献   

14.
交联膨润土吸附磷行为研究   总被引:28,自引:0,他引:28  
从热力学和动力学两方面讨论了交联膨润土吸附剂对磷的吸附特性。吸附等温式符合Langmuir公式:C/qe=0.17C+0.41。吸附热力学模型为lnC=-440/T-0.126,吸附动力学特性可用下式描述:log(qe-q)=logqe-Kt/2.303,ln[1-(q/qe)2]=-Kt。其中,K=(π/r)2D,lnD=-2.53-741.07/T。扩散活化能为6.161kJ/mol,表明吸附过程受扩散控制。  相似文献   

15.
李秀波  孙立君 《辽宁化工》2013,(10):1170-1172
采油废水中硫酸盐还原菌(SRB)所造成的注水系统的腐蚀、结垢和阻塞严重影响着原油的开发与生产。催化电解杀菌技术用于油田废水处理,利用废水中的Cl-产生的活性氯对杀菌起主要作用,杀菌效果好。催化电解杀灭SRB的试验结果表明,在电流密度25mA/cm2、极板间距2cm、pH值4~9的电解条件下处理30min时SRB杀菌率达99%以上。  相似文献   

16.
A simple ultrasound-assisted co-precipitation method was developed to prepare ferroferric oxide/graphene oxide magnetic nanoparticles (Fe3O4/GO MNPs). The hysteresis loop of Fe3O4/GO MNPs demonstrated that the sample was typical of superparamagnetic material. The samples were characterized by transmission electron microscope, and it is found that the particles are of small size. The Fe3O4/GO MNPs were further used as an adsorbent to remove Rhodamine B. The effects of initial pH of the solution, the dosage of adsorbent, temperature, contact time and the presence of interfering dyes on adsorption performance were investigated as well. The adsorption equilibrium and kinetics data were fitted well with the Freundlich isotherm and the pseudo-second-order kinetic model respectively. The adsorption process followed intra-particle diffusion model with more than one process affecting the adsorption of Rhodamine B. And the adsorption process was endothermic in nature. Furthermore, the magnetic composite with a high adsorption capacity of Rhodamine B could be effectively and simply separated using an external magnetic field. And the used particles could be regenerated and recycled easily. The magnetic composite could find potential applications for the removal of dye pollutants.  相似文献   

17.
制备了Fe3O4@ZIF-8磁纳米复合材料,以其作为吸附剂建立快速高效的磁固相微萃取方法。首先用水热法合成Fe3O4纳米球,然后进行羧基功能化,最后包覆ZIF-8外壳制备了Fe3O4@ZIF-8微球。以萘、蒽、咔唑、芴、联苯等多环芳烃为分析物建立HPLC-UV方法。以峰面积为响应信号,作为萃取条件优化实验的测量指标,考察微球用量、萃取时间、解吸溶剂种类、解吸溶剂用量、解吸时间等因素对萃取效果的影响,建立了快速高效的磁固相微萃取方法。用Fe3O4@ZIF-8磁纳米复合材料对环境水样中的痕量多环芳烃进行磁固相微萃取,实现了对环境水样中痕量多环芳烃的快速灵敏测定。  相似文献   

18.
胶原纤维固载Fe(Ⅲ)对磷酸根的吸附特性   总被引:1,自引:0,他引:1       下载免费PDF全文
丁云  廖学品  石碧 《化工学报》2007,58(5):1225-1231
将Fe(Ⅲ)固载在胶原纤维上制备吸附材料,研究了该吸附材料对磷酸根的吸附性能。结果表明,当温度为303 K,溶液的初始浓度为62.0 mg P·L-1时,胶原纤维固载Fe(Ⅲ)(FeICF)对磷酸根的吸附容量为32.69 mg P·g-1。在pH为3.0~6.0范围内平衡吸附量较大,即当磷酸根在溶液中以H2PO-4的形式存在时有利于吸附。吸附等温线符合Langmuir方程,吸附容量随温度和Fe(Ⅲ)的固载量的增加而增加。FeICF对磷酸根的吸附动力学符合拟二级速度方程。溶液中存在的Cl-、NO-3、SO2-4及CO2-3对磷酸根的吸附没有影响,表明FeICF对磷酸根有较强的选择吸附能力。  相似文献   

19.
Air‐stable Fe magnetic nanoparticles entrapped within carbon and porous crosslinked polystyrene microspheres of narrow size distribution were prepared by the following sequential steps: (1) Polystyrene/poly(divinyl benzene) and polystyrene/poly(styrene‐divinyl benzene) uniform micrometer‐sized composite particles were prepared by a single‐step swelling of uniform polystyrene template microspheres dispersed in an aqueous continuous phase with emulsion droplets of dibutyl phthalate containing the monomers divinyl benzene and styrene and the initiator benzoyl peroxide. The monomers within the swollen polystyrene template microspheres were then polymerized by raising the temperature to 73°C; (2) Porous poly (divinyl benzene) and poly(styrene‐divinyl benzene) uniform crosslinked microspheres were prepared by dissolution of the polystyrene template part of the former composite particles; (3) Uniform magnetic poly(divinyl benzene)/Fe and poly(styrene‐divinyl benzene)/Fe composite microspheres were prepared by entrapping Fe(CO)5 within the porous crosslinked microspheres, by suction of the Fe complex into the dried porous particles, followed by decomposition of the encapsulated Fe(CO)5 at 200°C in Ar atmosphere; (4) Uniform magnetic air‐stable C/Fe composite microspheres were prepared similarly, apart from changing the decomposition temperature from 200 to 600°C. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号