首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
《石油化工》2015,44(6):663
采用Aspen软件及修正的Wilson模型模拟了压力对乙酸异丙酯-异丙醇物系共沸组成的影响,提出该物系基于热集成的变压精馏工艺。在此基础上,研究了系统能耗随变压精馏工艺两塔压力组合的变化趋势,优化了理论塔板数、进料位置、回流比等操作参数。模拟结果表明,高压塔操作压力为0.60 MPa、减压塔操作压力为0.02 MPa时,热集成系统能耗利用最合理。该压力条件下变压精馏工艺的最优理论塔板数为高压塔26块、减压塔38块;最优进料位置为高压塔第15块理论塔板、减压塔第10块理论塔板;基于热集成工艺的最优回流比为高压塔1.0,减压塔2.0。热集成变压精馏工艺可节能28.5%。  相似文献   

2.
基于苯和乙醇共沸组成对压力敏感性的变化,提出了变压精馏与热集成相结合的方法对苯和乙醇共沸体系进行了流程模拟,并对各塔的关键参数进行优化设计,得到了最佳的工艺操作参数:高压塔的理论板数为20,进料位置为第10块理论板,回流比为10,塔顶采出量为902 kg/h,操作压力为1.0 MPa;常压塔理论板数为18,进料位置为第10块理论板,回流比为5,塔顶采出量为569.5 kg/h,操作压力为0.1 MPa;得到了苯和乙醇的质量分数分别为99.02%和95.23%。采用热量集成的方法,可降低常压塔塔顶循环物流的加热能耗34.1 kW。  相似文献   

3.
采用双效变压精馏工艺分离甲苯-正丁醇的模拟   总被引:4,自引:1,他引:3  
采用双效变压精馏工艺流程分离甲苯-正丁醇物系。利用Aspen Plus化工模拟软件,以分离过程能耗最低为目标函数、甲苯和正丁醇纯度为约束变量,对双效变压精馏工艺流程进行了优化计算。模拟结果表明,采用负压和常压双效变压精馏工艺可以实现甲苯-正丁醇物系的高纯度分离,即负压塔的优化操作参数为:塔压20.0 kPa、理论塔板数26块、进料板为第12块塔板、回流比1.1;常压塔的优化操作参数为:塔压102.0 kPa、理论塔板数32块、进料板为第14块塔板、回流比3.2。计算结果表明,与两塔采用外界蒸汽供热的方式相比,采用常压塔塔顶汽相潜热为负压塔塔底再沸器供热可节能约42.3%。  相似文献   

4.
《天然气化工》2019,(5):87-92
采用Aspen Plus软件对异丙醚-异丙醇共沸物进行了变压精馏过程模拟。低压塔压力设定为六盘水地区大气压85kPa,高压塔压力设定为300kPa。以年度总费用TAC最小为依据,对各项设计变量如理论塔板数、回流比和进料位置等进行了优化。结果表明,在异丙醚-异丙醇混合物处理量为100kmol/h,摩尔分数异丙醚为20%,异丙醇为80%时,采用变压精馏可以使异丙醚和异丙醇产品纯度均达到99.9%。在此基础上,通过调节两塔的回流比,进行了完全热集成工艺设计。相比无热集成工艺,完全热集成工艺的设备投资和操作费用均明显降低,TAC节约了27.64%。结果表明完全热集成变压精馏工艺可以有效分离异丙醚—异丙醇共沸物,且经济上更合理,为高海拔地区此类共沸物的分离提供一些技术参考。  相似文献   

5.
基于丙酮-甲醇共沸物对压力变化敏感的特点,采用完全热集成变压精馏工艺分离该共沸物。基于相图分析,确定了精馏序列。以全流程的年度总费用TAC最小为目标,对两塔的塔板数、进料位置和回流比进行了优化设计。确定了丙酮-甲醇混合物(m丙酮:m甲醇=40:60)进料流率为3000kg/h的最佳工艺参数:低压塔操作压力为101.325kPa,塔板数为52块,丙酮-甲醇混合物和循环物流分别在第37块和22块位置进料,回流比为1.8;高压塔操作压力为506.625kPa,塔板数为33块,进料位置为第16块,回流比为4.3。高压塔塔顶物流和低压塔塔釜物流有43℃温差,满足完全热集成的条件,热集成负荷为1234.51kW。甲醇和丙酮纯度达到了99.9%,满足分离要求。结果表明完全热集成变压精馏工艺可以有效分离丙酮-甲醇共沸物。  相似文献   

6.
对亚高原地区乙酸乙酯-乙醇共沸物进行了变压精馏分离工艺(PSD)模拟,低压塔压力设定为云贵高原地区的大气压0.85 atm,高压塔压力设定为3 atm。以年度总费用TAC最小为依据,对各项设计变量如理论塔板数、回流比和进料位置等进行了优化,在此基础上,本文又进行了部分热集成变压精馏(PHIPSD)和完全热集成变压精馏(FHIPSD)的工艺设计。结果表明热集成工艺需要更低的设备成本和能耗成本,相比无热集成工艺,部分热集成变压精馏(PHIPSD)和完全热集成变压精馏(FHIPSD)的年度总费用TAC分别节省27.82 %和28.89 %,完全热集成变压精馏工艺可以有效分离乙酸乙酯—乙醇共沸物,且经济上更合理,本文的研究内容为亚高原地区此类共沸物的分离提供一些技术参考。  相似文献   

7.
本文以糠醛为萃取剂,对压力不敏感的苯环己烷共沸体系采用萃取精馏热集成过程进行分离;采用遗传算法对萃取精馏过程进行优化设计,结果表明萃取精馏热集成能够节省15.7%的过程能耗;研究了系统的动态特性并建立了三种控制结构,基于前两种控制结构提出的第三种控制结构,即压力补偿温度控制结构能够有效地抵抗进料流量与进料组成扰动,显示出较好的控制性能。  相似文献   

8.
高纯度异丙醇被广泛用作电子清洁剂与溶剂。异丙醇生产中,异丙醇与副产物二异丙醚形成共沸物,普通精馏无法有效分离,可采用完全热集成变压精馏工艺进行分离。利用Aspen Plus流程模拟软件,首先以高压塔再沸器热负荷最低为目标,对工艺进行局部优化;然后以年度总费用(TAC)最低为目标,采用序贯迭代法,对工艺进行全局优化。结果表明,优化设计极大地节约了能量,年度总费用降至416567 USD/a、高压塔塔板数减少为21块、设备费用降至536094 USD、完全热集成负荷达到751.71 kW。利用Aspen Plus Dynamics软件,采用压力补偿控温策略与组成-温度串级控制,建立了动态控制结构,在进料流量与进料组成发生±20%扰动时,仍表现出较好控制效果。  相似文献   

9.
对甲基丙烯酸甲酯/甲醇/水三元共沸混合物分离进行了常规变压精馏和双效热集成变压精馏模拟.以年总费用(TAC)为目标函数,对进料板位置、回流比、塔板数等参数进行了优化.在常规变压精馏工艺中,高压塔进料板位置最佳为第10块板、回流比为0.4、塔板数为23块,低压塔最佳进料板位置为第15块板、回流比为1.0、塔板数为60块,...  相似文献   

10.
脱除混合物中的水和回收苯酚供缩合反应循环使用,是双酚A生产工艺中非常重要的单元操作。由于苯酚和水能形成共沸物,因此不能用普通精馏方法将它们分离。为此,在苯酚-水物系中加入了一种共沸剂甲苯,用共沸精馏法实现了苯酚-水混合物的分离。分离后的水可以直接送到生化装置进行处理,苯酚回收供反应系统循环使用。  相似文献   

11.
通过乙腈-正丙醇的共沸性质剖析,探索了变压精馏与萃取精馏进行该二元共沸物分离的可行性.利用NRTL方程计算液相的活度系数,其二元相互参数采用实验相平衡数据拟合,通过Aspen Plus对上述2种分离方法开展模拟优化,以年度总费用(T AC)最小为目标函数,得到了2种工艺的优化设计参数.结果表明,采用双塔变压精馏或萃取精...  相似文献   

12.
反应-共沸精馏合成N-甲酰吗啉   总被引:1,自引:0,他引:1  
报道了一种将反应精馏和共沸精馏耦合制备N-甲酰吗啉的新工艺,分别确定了工艺的最佳操作条件和理论塔板数。当吗啉和甲酸的进料摩尔比为1.02,以RA-01作为共沸精馏溶剂,溶剂比为8,反应段、精馏段和提馏段理论塔板数分别为5、18和6时,反应精馏实验得到的N-甲酰吗啉平均收率为99.45%。采用闪蒸法提纯N-甲酰吗啉,产物纯度99.96%,总收率99.15%。工艺实验与模拟计算的一致性较好。  相似文献   

13.
利用Aspen Plus化工流程模拟软件,对轻汽油预醚化-催化蒸馏组合工艺过程进行模拟和研究。针对固定床反应器和催化蒸馏塔内C5活性烯烃与甲醇醚化生成甲基叔戊基醚(TAME)反应分别采用均相和非均相反应动力学模型;催化蒸馏塔采用平衡级RedFrac模型和基于速率精馏的非平衡级RateFrac模型。对模型验证结果表明,所建立的轻汽油预醚化-催化蒸馏组合工艺模型具有较高的准确性和适用性。利用该模型对轻汽油醚化合成TAME过程进行分析,分别考察空速、反应温度、补加甲醇、进料位置以及反应段催化剂包性质等对C5活性烯烃转化率的影响,得到轻汽油预醚化-催化蒸馏组合工艺优化的操作条件为空速2~3 h-1,反应温度70 ℃等,为轻汽油醚化过程操作和优化以及工艺设计提供重要指导和依据。  相似文献   

14.
对费-托合成煤制油过程副产物混醇的萃取精馏脱水工艺进行模拟研究,向某企业混醇模拟原料中分别添加乙二醇(EG)、N,N-二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)3种溶剂,通过UNIFAC模型评价3种溶剂的萃取精馏脱水效果来选取最佳萃取剂,并应用于模拟混醇料液的相平衡和连续精馏试验。结果表明:EG、DMSO对混醇原料体系的萃取精馏脱水效果明显优于DMF,综合考虑萃取剂的稳定性等因素,选取EG作为混醇原料的最佳脱水萃取剂;采用EG作为萃取剂时,不同溶剂比(萃取剂与混醇的体积比)对模拟混醇料液脱水效果的试验结果和UNIFAC模拟结果吻合较好,随着溶剂比增加,精馏塔塔顶组分中的水含量降低,当溶剂比为3∶1 时,塔顶混醇馏分中水质量分数可降至0.5%以下。  相似文献   

15.
煤焦油用途十分广泛,但组成极其复杂,通过将真实组分与虚拟组分相结合的方法来表征复杂的煤焦油体系,运用化工流程模拟软件Aspen Plus V9.0对煤焦油常减压蒸馏流程进行了模拟计算,分析了回流比、理论塔板数、侧线采出位置和进料位置对产品质量的影响。结果表明:在优化的工艺条件下,轻油馏分中酚质量分数为0.5%;酚油馏分中酚质量分数达到42.4%,萘质量分数为9.5%;萘油馏分中萘质量分数达到85.0%;洗油馏分中酚质量分数和萘质量分数分别为0.11%和2.6%,产品质量显著提升。  相似文献   

16.
以水为萃取剂对二氯甲烷-丙酮混合物进行了萃取精馏过程模拟,体系的气-液平衡和液-液平衡分别采用Wilson模型和NRTL模型预测。分析了总理论板数,回流比,萃取剂进料速率、塔板数、温度和原料进料塔板数、温度等操作参数对精馏过程的影响。并取得了最佳工艺参数为:萃取塔采用36块理论板,回流比为3,原料在第16块板进料,萃取剂用量1 500kg/h,第7块板进料时塔顶得到二氯甲烷-水的共沸物,分层得99.9%的二氯甲烷,塔釜得到丙酮-水的混合物进入丙酮塔;丙酮塔为简单精馏塔,采用35块理论板,回流比为4,第25块板进料,塔顶可得99.7%的丙酮,塔釜得到几乎纯净的水,经冷却后可用作萃取塔的萃取水,循环套用。  相似文献   

17.
18.
本文在研究原料性质以及系统联接的基础上,进行了开发模拟油品裂解和聚合的减压炉模型的尝试,不但建立了以机理模型为基础的完整的常减压蒸馏流程模拟系统,而且初步了解决了多年来减压蒸馏模拟误差大等一系列问题,对实际装置的模拟计算表明,本文开发的模拟系统具有满意的模拟精度(最大平均偏差<3%)。  相似文献   

19.
常压精馏分离环氧丙烷-甲醇的工艺模拟   总被引:1,自引:0,他引:1  
利用计算机对环氧丙烷-甲醇混合物进行了常压精馏过程模拟,体系的逸度系数和活度系数分别采用位力方程和 NRTL 热力学模型。分析了理论塔板数、进料位置、回流比、塔顶采出量等操作参数对过程的影响,并得出了最佳工艺参数为:采用45块理论塔板,第37块板进料,回流比为5,可以得到99.5%(质量分数)的环氧丙烷,同时塔釜得到98.2%(质量分数)的甲醇。模拟结果对工业过程的设计和设备改造具有一定指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号