首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《微型机与应用》2017,(1):73-75
针对同一物体不同视角下获得的三维点云数据,提出一种基于改进特征点对选取的三维点云配准方法。在欧氏距离的基础上选取与目标点最近的三点均值为对应点,并应用邻域比值法来剔除错误点,结合K-d tree提高搜索速度,实现最终点云配准。实验结果表明,该方法具有可行性,相比传统ICP算法,其匹配精度和效率明显提升。  相似文献   

2.
基于公共特征点的三维测量数据拼接方法   总被引:1,自引:0,他引:1  
针对大型物体和回转体的三维形貌视觉测量,提出了一种基于公共特征点的三维数据拼接方法.该方法首先把测量对象的表面划分成若干个子区域,并且确保相邻的子区域含有重合区域,然后采用一套双目立体视觉测量系统对各个子区域进行单独测量,利用重合区域的公共特征点计算前后两次测量的空间变换矩阵,将三维点坐标转换到一个坐标系下完成拼接.变换矩阵的计算引入了Rodrigues参数,简化了运算过程,且具有较高的精度.该方法操作简单,非常适合于实际应用,实验结果证明了此方法的有效性.  相似文献   

3.
以遥感图像为研究对象论述了一种基于特征点的图像匹配算法在遥感图像匹配与拼接中的应用及改进。在提取图像特征点上,尺度不变特征转换SIFT算法能够对缩放、旋转、仿射的图像保持尺度不变特性。对于提取出的SIFT特征点,采用改进的随机抽样一致性RANSAC方法进行提纯,剔除多余的特征点,缩短匹配时间。实验证明,该算法有效提高了遥感图像匹配的效率和准确性。  相似文献   

4.
Multimedia Tools and Applications - Image registration is a crucial step in the field of computer vision. However, the traditional scale invariant feature transform (SIFT) based method often...  相似文献   

5.
通过分析比较不同配准方法的原理及优缺点,提出了一种基于图像区域特征的配准方法.算法首先对待配准图像进行自适应阈值分割,然后利用数学形态学方法进行区域轮廓提取优化,接着计算各区域的特征描述,最后以各特征向量距离最近区域的重心作为控制点集对图像进行配准.实验结果表明,该算法能够对图像进行快速准确的配准,而且具有纠正一定几何畸变的能力,是一种有效的自动配准方法.  相似文献   

6.
基于SURF特征点的图像配准系统   总被引:1,自引:0,他引:1  
提出一种基于SURF特征点的图像自动配准方法。首先在图像的尺度空间中提取特征点,然后对特征点进行亚像素定位,并赋予主方向。根据特征点邻域信息分布计算得到特征向量后,利用最近邻特征点距离与次近邻特征点距离之比得到初始匹配点对。然后使用RANSAC算法剔除错误匹配特征点对,同时计算得到图像之间的变换参数。实验结果表明该方法能够实现不同分辨率图像的自动配准。  相似文献   

7.
提出了一种基于SUSAN算法提取图像特征点并进行图像配准的改进算法。首先采用SUSAN算子对图像进行特征点提取,然后利用最近邻次近邻比值法对特征点进行粗匹配,通过RANSAC(随机抽样一致性)算法剔除错误的匹配点对;最后通过重采样和双线性插值完成图像的配准。实验结果表明,本算法在图像配准中具有一定的有效性。  相似文献   

8.
在光学非接触三维测量中,复杂对象的重构需要多组测量数据的配准。最近点迭代(ICP)算法是三维激光扫描数据处理中点云数据配准的一种经典的数学方法,为了获得更好的配准结果,在ICP算法的基础之上,提出了结合基于特征点的等曲率预配准方法和邻近搜索ICP改进算法的精细配准,自动进行点云数据配准的算法,经对牙齿点云模型实验发现,点云数据量越大,算法的配准速度优势越明显,采用ICP算法的运行时间(194.58 s)远大于本算法的运行时间(89.13 s)。应用实例表明:该算法具有速度快、精度高的特点,算法效果良好。  相似文献   

9.
针对传统特征点配准算法效率过慢、对特征点存在误检的现象,提出了一种基于特征点检测的图像配准算法.对特征点检测方法进行了改进,利用像素点与周围像素点的灰度关系滤除非特征点;对剩余的点使用提出的菱形模版进行精确检测,建立了特征点集合;利用迭代最近点(ICP)算法对特征点集合进行配准.实验结果表明:改进算法在特征点检测准确性和检测时间上明显提高,并且具有良好配准效果.  相似文献   

10.
图像特征点检测是图像匹配、目标识别以及运动估计等领域的一项关键技术.本文对图像轮廓二维信息进行降维处理,提出了一种特征点质量评价因子.利用该因子并结合文中给出的特征点提取准则对图像轮廓链码进行分析,提取特征点.该方法避免了常规的基于链码的特征点检测方法中曲率的计算,提高了检测速度.试验证明该方法具有较好的实时性和定位精度.  相似文献   

11.
基于特征点的全自动无缝图像拼接方法   总被引:2,自引:0,他引:2  
提出了一种基于特征点的全自动无缝图像拼接方法.该方法采用对于尺度具有鲁棒性的SIFT算法进行特征点的提取与匹配,并通过引导互匹配及投票过滤的方法提高特征点的匹配精确度,使用稳健的RANSAC算法求出图像间变换矩阵H的初值并使用LM非线性迭代算法精炼H,最终使用加权平滑算法完成了图像的无缝拼接.整个处理过程完全自动地实现了对一组图像的无缝拼接,克服了传统图像拼接方法在尺度和光照变化条件下的局限性.实验结果验证了方法的有效性.  相似文献   

12.
提出了一种新的基于多特征的图像自动配准技术。该方法使用不变矩对图像中的区域进行匹配,然后利用匹配区域的区域标记寻找大尺度上的特征点作为控制点进行初始配准,进而在此基础上指导改进链码的方法对开放边缘进行二次配准。最后根据所得到的控制点构成的超定方程组利用最小二乘拟合的方法得到配准参数。经过实验证明该算法能够达到亚像素级的配准精度,并且适用于不同传感器图像以及同传感器同波段或不同波段图像之间的精确配准。  相似文献   

13.
With the development of manufacture, more and more 3D models are generated by users and many differnet factories. 3D model retrieval has been receiving more and more attention in computer vision and the field of data analysis. In this paper, we propose a novel 3D model retrieval algorithm by cross-modal feature mapping (CMFM), which utilize one single image as query information to address 3D model retrieval problem. Specifically, in this paper, we first proposed to leverage 2D image to handle 3d model retrieval problem, which is one new problem in this field. The proposed feature learning method can benefit: 1) avoiding the interference of query image recorded by different visual sensor; 2) handling cross-modal data retrieval by simple computer vision technologies, which can guarantee the performance of retrieval and also control that the retrieval time hold a low level; 3) the low complexity of this method can guarantee that this method can be applied in many fields. Finally, we validate the retrieval method on three popular datasets. Extensive comparison experiments show the superiority of the proposed mehtod. To the best of our knowledge, it is the first method to handle 3D model retreival based on one single 2D image.  相似文献   

14.
This paper proposes a novel method for content-based watermarking based on feature points of an image. At each feature point, the watermark is embedded after scale normalization according to the local characteristic scale. Characteristic scale is the maximum scale of the scale-space representation of an image at the feature point. By binding watermarking with the local characteristics of an image, resilience against affine transformations can be obtained easily. Experimental results show that the proposed method is robust against various image processing steps including affine transformations, cropping, filtering and JPEG compression.  相似文献   

15.
2D/3D image registration on the GPU   总被引:1,自引:0,他引:1  
We present a method that performs a rigid 2D/3D image registration efficiently on the Graphical Processing Unit (GPU). As one main contribution of this paper, we propose an efficient method for generating realistic DRRs that are visually similar to x-ray images. Therefore, we model some of the electronic post-processes of current x-ray C-arm-systems. As another main contribution, the GPU is used to compute eight intensity-based similarity measures between the DRR and the x-ray image in parallel. A combination of these eight similarity measures is used as a new similarity measure for the optimization. We evaluated the performance and the precision of our 2D/3D image registration algorithm using two phantom models. Compared to a CPU + GPU algorithm, which calculates the similarity measures on the CPU, our GPU algorithm is between three and six times faster. In contrast to single similarity measures, our new similarity measure achieved precise and robust registration results for both phantom models.  相似文献   

16.
Local motion within intra-patient biomedical images can be compensated by using elastic image registration. The application of B-spline based elastic registration during interventional treatment is seriously hampered by its considerable computation time. The graphics processing unit (GPU) can be used to accelerate the calculation of such elastic registrations by using its parallel processing power, and by employing the hardwired tri-linear interpolation capabilities in order to efficiently perform the cubic B-spline evaluation. In this article it is shown that the similarity measure and its derivatives also can be calculated on the GPU, using a two pass approach. On average a speedup factor 50 compared to a straight-forward CPU implementation was reached.  相似文献   

17.
18.
Image registration consists in estimating geometric and photometric transformations that align two images as best as possible. The direct approach consists in minimizing the discrepancy in the intensity or color of the pixels. The inverse compositional algorithm has been recently proposed by Baker et al. for the direct estimation of groupwise geometric transformations. It is efficient in that it performs several computationally expensive calculations at a pre-computation phase. Photometric transformations act on the value of the pixels. They account for effects such as lighting change. Jointly estimating geometric and photometric transformations is thus important for many tasks such as image mosaicing. We propose an algorithm to jointly estimate groupwise geometric and photometric transformations while preserving the efficient pre-computation based design of the original inverse compositional algorithm. It is called the dual inverse compositional algorithm. It uses different approximations than the simultaneous inverse compositional algorithm and handles groupwise geometric and global photometric transformations. Its name stems from the fact that it uses an inverse compositional update rule for both the geometric and the photometric transformations. We demonstrate the proposed algorithm and compare it to previous ones on simulated and real data. This shows clear improvements in computational efficiency and in terms of convergence.  相似文献   

19.
基于二维图像三维重建的人脸特征提取技术研究   总被引:1,自引:0,他引:1  
采用基于二维图像的三维重建对人脸特征进行提取.首先应用平行双目视觉原理获取人脸的二维图像,然后对图像进行预处理,消除图像上的噪音点,增强图像,以便提取特征点,对这些二维图像上的特征点进行优化计算,最后得到整体人脸的三维特征点信息.  相似文献   

20.
Ma  Yingjun  Niu  Dongmei  Zhang  Jinshuo  Zhao  Xiuyang  Yang  Bo  Zhang  Caiming 《Applied Intelligence》2022,52(1):766-779

Image registration aims to establish an active correspondence between a pair of images. Such correspondence is critical for many significant applications, such as image fusion, tumor growth monitoring, and atlas generation. In this study, we propose an unsupervised deformable image registration network (UDIR-Net) for 3D medical images. The proposed UDIR-Net is designed in an encoder-decoder architecture and directly estimates the complex deformation field between input pairwise images without any supervised information. In particular, we recalibrate the feature slice of each feature map that is propagated between the encoder and the decoder in accordance with the importance of each feature slice and the correlation between feature slices. This method enhances the representational power of feature maps. To achieve efficient and robust training, we design a novel hierarchical loss function that evaluates multiscale similarity loss between registered image pairs. The proposed UDIR-Net is tested on different public magnetic resonance image datasets of the human brain. Experimental results show that UDIR-Net exhibits competitive performance against several state-of-the-art methods.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号