首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
采用恒应变速率拉伸方法研究了应变速率对TA15合金超塑性的影响。结果表明,在变形温度为900℃,应变速率为3.3×10-4~1.1×10-2s-1时,随应变速率的降低,伸长率逐渐增大,最大伸长率为1074%。同时,在高应变速率条件下也获得了良好的超塑性能。此外,应力-应变曲线中出现了较长的应变硬化阶段,应变速率越低,应变硬化阶段越长,并且有利于超塑性变形。微观组织观察表明应变速率对TA15合金显微组织演变有着显著的影响,应变速率越低,显微组织粗化越严重。高应变速率条件下,由于动态再结晶的作用,试样变形区出现了很多新的细小等轴α相。  相似文献   

2.
TA12A高温钛合金超塑性工艺参数实验研究   总被引:2,自引:0,他引:2  
为了研究TA12A高温钛合金的超塑性工艺参数,利用2 mm厚板材进行了不同温度和不同初始应变速率下的高温拉伸试验,并观察了920℃拉伸试样的显微组织。结果表明,TA12A板材在900~940℃范围内以不同初始速率拉伸的伸长率均超过400%,具有良好的超塑拉伸性能。在温度为940℃和初始应变速率为1×10~(-3)s~(-1)时,断后伸长率最大可达785%;考虑在实际生产过程中温度越高则高温驻留时间越长,对成形后的材料性能降低越明显,最终确定超塑成形的工艺参数为:温度920℃,初始应变速率1×10~(-3)s~(-1);在超塑变形过程中,拉伸段的晶粒尺寸变大是保温时间和应变诱导的共同作用结果。  相似文献   

3.
通过高温拉伸试验研究了Ti60合金在940~1000℃、6.7×10-5~3.3×10-2s-1应变速率条件下的超塑性变形行为及组织演化规律。结果表明:Ti60合金具有较宽的超塑性变形温度及应变速率范围,在上述所有实验条件下都具有超塑性,伸长率220%~527%。最佳超塑性拉伸变形条件为980℃、3.3×10-4s-1,在此条件下,该合金伸长率达到最大值527%。在超塑性拉伸过程中,有晶界滑动、晶内变形、动态再结晶及扩散蠕变等过程发生,试样变形区由于发生动态再结晶,原始条状初生α相明显等轴化。  相似文献   

4.
TA15合金应变速率循环超塑性研究   总被引:1,自引:1,他引:0  
采用应变速率循环法研究了TA15合金的超塑性.在变形温度分别为850、900、950℃,应变速率范同为1×10-5~1×10-3S-1的试验条件下.讨论了工艺参数对流变应力、m值及其超塑性的影响.结果表明,TA15合金具有较好的超塑性,最佳变形温度为900℃,伸长率为412%.  相似文献   

5.
研究了真空环境中TA32钛合金板材在温度950℃、应变速率5. 32×10~(-4)~2. 08×10~(-2)s~(-1)条件下的超塑性变形行为。结果表明,在不同应变速率条件下,合金的流变应力曲线特征和显微组织演变显著不同。在应变速率较低(5. 32×10~(-4)~3. 33×10~(-3)s~(-1))条件下,拉伸真应力-真应变曲线呈传统超塑变形的稳态流动特征,变形后的合金中初生α相晶粒尺寸较大;在高应变速率(8. 31×10~(-3)s~(-1)~2. 08×10~(-2)s~(-1))条件下,拉伸真应力-真应变曲线中流变应力增大到峰值后快速单调递减直至试样断裂,合金变形过程中初生α相发生动态再结晶,晶粒尺寸较低应变速率条件下显著细化。950℃时,TA32钛合金板材均具有超塑性变形能力,超塑性延伸率在145%~519%之间;当应变速率为5. 32×10~(-4)s~(-1)时,具有最佳的超塑性,拉伸延伸率可达519%。断裂区形貌分析发现,TA32钛合金板材的超塑性断裂模式为空洞聚集-连接-长大型断裂。  相似文献   

6.
在304不锈钢钢板采用TIG堆焊了FM-52M镍基合金,并利用Gleeble热模拟试验机对FM-52M堆焊层试样在不同条件下的高温拉伸性能进行了研究。结果表明:经750℃保温30 min处理后,FM-52M合金的强度与750℃保温30 s处理的相比明显降低;在高温、应力缓慢加载的条件下,FM-52M的力学性能明显下降。热处理温度为950℃时,拉伸速率为0.01 mm/s的堆焊试样强度和断后伸长率均比拉伸速率为0.5 mm/s的小。经过1200℃的峰值温度保温后,合金的屈服强度比950℃的试样略低,但断后伸长率更好。  相似文献   

7.
对TA15钛合金进行了高温单向拉伸试验,获得了试验用板材在不同温度和应变速率下的力学性能。在此基础上,开展了板材高温应力松弛试验,得到了该材料在600、650、700和750℃这4个典型温度下的应力松弛曲线。研究了温度对TA15钛合金应力松弛行为、松弛应力和松弛应变的影响,获得了应力松弛速率与时间的变化关系。结果表明:温度越高,保温时间越长,试样在卸除外载荷后,松弛应力和松弛应变较小。且温度范围700~750℃,保温时间5~8 min时,回弹消除彻底和高效,为降低回弹的较优工艺参数,研究结果可为热成形工艺、热校形工艺及紧固件的使用周期提供指导。  相似文献   

8.
研究粗晶粒Mg-2Al(质量分数,%)合金板材的高温拉伸性能和变形机制,并研究溶质Al原子对高温变形机制的影响。通过熔炼、浇铸、轧制和热处理等方法制备平均晶粒尺寸为48.35μm的Mg-2Al(质量分数,%)板材。在300~450℃条件下,以恒定拉伸速率1×10-3 s-1和1×10-2 s-1进行拉伸至失效实验,并在4.98×10-5~2.02×10-2 s-1的应变速率范围内进行应变速率变化条件下的拉伸实验。结果表明,纯Mg的应力指数(n)较为稳定,n≈5时,变形机制为位错攀移蠕变。Mg-2Al合金的应力指数呈现3个区域。在高温和低应变速率区域,Mg-2Al呈现出溶质牵制位错蠕变的特征,即应力指数为n≈3.83,蠕变激活能为Q≈141.46 kJ/mol,且当拉伸速率为1×10-3 s-1时,Mg-2Al合金在400和450℃的伸长率均超过100%。  相似文献   

9.
通过拉伸试验、显微组织观察等手段,研究了初始应变速率和变形温度对低温等径角挤压(ECAP)制备的1050铝合金拉伸性能及晶粒大小的影响。结果表明,随初始应变速率的增加,流动应力不断增加;随着变形温度的升高,流动应力不断减小。当初始应变速率为5×10~(-4)s~(-1)、变形温度为400℃时,合金具有最大的伸长率90.4%。当变形温度为400℃,初始应变速率大于或小于5×10~(-4)s~(-1)时,合金的伸长率均逐渐降低。当初始应变速率为5×10~(-4)s~(-1),变形温度大于或小于400℃时,合金的伸长率均逐渐降低。随初始应变速率的降低和变形温度的增加,合金的晶粒尺寸增大明显。  相似文献   

10.
研究了TB8合金在不同变形条件下的超塑性及其显微组织。结果表明,变形温度为690~840℃、应变速率为1.0×10~(-4)~1.0×10~(-3)s~(-1)时,TB8钛合金均具有超塑性。750℃、1.0×10~(-4)s~(-1)拉伸时,合金塑性最佳,伸长率为524.9%。变形过程中,变形软化和加工硬化相互抵消,表现为传统的超塑性变形稳态流动特征。变形温度、应变速率和变形程度对合金的超塑性、显微组织均有明显影响。应变速率越低,等轴β相晶粒尺寸越大。拉伸温度升高,β相晶粒尺寸增大,α相颗粒逐渐被溶解,β相饱和化,但仍能保持一定的等轴度。随着变形程度增大,β相晶界和基体弥散析出的α相越多,细小、弥散分布的α相可以抑制晶粒的过分长大,使合金塑性得到改善。  相似文献   

11.
采用应变速率循环法(基于时间间隔)研究了TA15钛合金的超塑性拉伸变形行为及组织变化规律.结果表明,在变形温度分别为850、900、950℃,应变速率范围为5×10~(-6)~5×10~(-4)S~(-1)的实验条件下,TA15具有良好的超塑性.在超塑性拉伸过程中,试样变形区将发生动态再结晶,使原始条状初生α相破碎、细化和等轴化,有利于超塑性的提高.在最佳超塑性条件下(900℃),两相等轴状较多且比例非常接近,α相数量相比拉伸前试样有所减少,初生α相大小及分布较均匀,但点状α相有一定的长大,β相有少许的合并长大.  相似文献   

12.
在Gleeble-3500热模拟试验机上对AZ31B镁合金薄板(0.6 mm)拉伸试样在100~350℃的温度范围和1×10-1~1×10-3s-1的应变速率范围内进行了的单向拉伸实验,根据实验结果对AZ31B镁合金薄板的力学性能进行了分析.结果表明:AZ31B镁合金薄板在较低变形温度100~150℃时,应变速率对流动应力的影响不大;相比之下应变速率对AZ31B镁合金的断裂伸长率却有一定的影响,提高应变速率会降低材料的伸长率;在较高变形温度(200℃以上)时,应变速率对流动应力的影响比较明显,表现出显著的应变速率敏感性.  相似文献   

13.
通过高温拉伸及胀形实验,研究了Fe78Si9B13非晶合金的塑性变形性能。高温拉伸的温度范围为430℃~530℃,初始应变速率为1.67×10-4s-1~1.67×10-3s-1。利用X射线衍射(XRD)和扫描电镜(SEM)对高温变形后的微观组织进行了分析。高温拉伸的延伸率随温度的升高先增大后减小,450℃时达到最大;在450℃,初始应变速率为8.33×10-4s-1时延伸率为40%。在450℃胀形得到半径为5mm、高4mm的近半球试件,显示了Fe78Si9B13非晶合金具有良好的高温变形性能。高温塑性变形过程中伴随着非晶的晶化,使塑性流动应力增大,影响了Fe78Si9B13非晶合金的高温变形性能。  相似文献   

14.
研究了原始晶粒尺寸为220 (m的正化学计量比单相Ni-50Al金属间化合物的高温变形行为及组织演变规律.结果表明,该合金在温度1000~1100 ℃,应变速率7.5×10~(-4)~1×10~(-3) s~(-1)范围内具有良好的高温塑性变形能力;在1075 ℃,应变速率为8.75×10~(-4) s~(-1)时,最大延伸率可达139%.金相显微分析表明,原始大晶粒组织经高温塑性变形后显著细化;EBSD与 TEM分析表明,变形过程中小角度晶界持续产生,较小角度晶界向较大角度晶界不断演变,最终导致晶粒显著细化.显微结构综合分析表明,大晶粒Ni-50Al合金的高温塑性变形是由位错的交滑移与攀移等交互作用产生的连续动态回复和再结晶导致的.  相似文献   

15.
采用分步变形法对TA15合金在10 kN高温电子拉伸试验机上进行了超塑性拉伸试验,研究了变形温度和预变形量对该合金超塑性性能及微观组织演变。结果表明:变形温度为850~950℃和预变形量为100%~200%时,TA15合金呈现出良好的超塑性;变形温度为900℃和预变形量为150%时,该合金的超塑性能最好,最大延伸率为1456%;变形温度为950℃时,该合金的超塑性能降低,延伸率仅为188%。TA15合金的微观组织状态显示:该合金在拉伸变形过程中微观组织保持等轴状,但是随着变形温度的升高,晶粒开始长大,变形温度越高,晶粒长大越显著。  相似文献   

16.
片状TA15钛合金在热变形过程中的动态球化动力学   总被引:1,自引:0,他引:1  
通过等温热压缩实验定量地研究片层TA15钛合金在860~940℃,应变速率0.01~10s?1范围内的动态球化动力学。研究发现TA15钛合金的动态球化动力学和动力学速率对热变形参数很敏感。动态球化率随应变的增加、温度的升高和应变速率的降低而增大,且应变的变化规律遵循动力学Avrami模型曲线。通过模型预测球化开始应变和完全球化所需要的应变分别为0.34~0.59和3.40~6.80。动态球化动力学速率随着应变的增加呈现先增大后减小的趋势。球化动力学速率的峰值对应的球化率为20%~33%,且随着温度的升高和应变速率的降低而增大。  相似文献   

17.
采用自行设计的热模拟试样,研究变形条件对MB15镁合金力学性能及组织影响的规律,并对热压缩后的MB15镁合金试样超塑性性能进行了试验研究。研究结果表明,对于MB15镁合金,当变形温度为300℃、应变速率为5.0×10-3s-1、变形程度为80%时,MB15镁合金具有良好的综合力学性能;当变形温度为340℃、应变速率为5.56×10-3s-1时,延伸率可达到307.9%;当应变速率在5.56×10-4s-1~1.0×10-2s-1范围时,延伸率≥251.2%。  相似文献   

18.
针对热挤压态FGH95合金进行变形温度为1050~1120 ℃、变形量为50%和70%、应变速率为10?4~1 s?1的热压缩试验,研究该合金动态再结晶(DRX)的组织演变和形核机制。结果表明:提高变形温度和降低应变速率可以促进小角度晶界向大角度晶界迁移,有利于动态再结晶晶粒的长大;变形温度和变形量对热挤压态FGH95合金的动态再结晶机理的影响不明显,而应变速率对动态再结晶机制影响较大;随着应变速率的增加,热挤压态FGH95合金由不连续动态再结晶机制逐渐转变为连续动态再结晶机制;热挤压态FGH95合金的动态再结晶以不连续动态再结晶形核机制为主,以连续动态再结晶形核机制为辅;在1050 ℃、1 s?1变形条件下,热挤压态FGH95合金发生连续动态再结晶形核。  相似文献   

19.
热轧MB8镁合金的超塑性   总被引:1,自引:0,他引:1  
对热轧MB8(Mg-1.5Mn-0.3Ce)镁合金板材的超塑性进行了研究。高温拉伸实验结果表明,合金在573~723 K及2×10-2~4×10-4s-1应变速率范围内具有良好的超塑性,在673 K及4×10-4s-1条件下得到最大断裂伸长率为441.6%;在723 K时最高应变速率敏感系数m为0.42,此时流变应力仅为6.3 MPa。此外,采用SEM对拉伸试样断口形貌进行了观察,并通过断裂区域显微组织的观察分析了Mg-1.5Mn-0.3Ce镁合金超塑性变形的机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号