首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
李波  牛力  黄鑫  丁洪伟 《电子与信息学报》2020,42(11):2664-2670
车载云计算环境中的计算卸载存在回程网络延迟高、远程云端负载大等问题,车载边缘计算利用边缘服务器靠近车载终端,就近提供云计算服务的特点,在一定程度上解决了上述问题。但由于汽车运动造成的通信环境动态变化进而导致任务完成时间增加,为此该文提出一种基于移动路径可预测的计算卸载切换策略MPOHS,即在车辆移动路径可预测情况下,引入基于最小完成时间的计算切换策略,以降低车辆移动性对计算卸载的影响。实验结果表明,相对于现有研究,该文所提算法能够在减少平均任务完成时间的同时,减少切换次数和切换时间开销,有效降低汽车运动对计算卸载的影响。  相似文献   

2.
移动边缘计算(MEC)通过在移动网络边缘提供IT服务环境和云计算能力带来高带宽、低时延优势,从而在下一代移动网络的研究中引起了广泛的关注。该文研究车载网络中车辆卸载请求任务时搜寻服务节点为其服务的匹配问题,构建一个基于MEC的卸载框架,任务既可以卸载到MEC服务器以车辆到基础设施(V2I)形式通信,也可以卸载到邻近车辆进行车辆到车辆(V2V)通信。考虑到资源有限性、异构性,任务多样性,建模该框架为组合拍卖模式,提出一种多轮顺序组合拍卖机制,由层次分析法(AHP)排序、任务投标、获胜者决策3个阶段组成。仿真结果表明,所提机制可以在时延和容量约束下,使请求车辆效益提高的同时最大化服务节点的效益。  相似文献   

3.
车载边缘计算卸载技术研究综述   总被引:1,自引:0,他引:1  
刘雷  陈晨  冯杰  肖婷婷  裴庆祺 《电子学报》2021,49(5):861-871
通过将移动边缘计算技术应用在车联网,车载边缘计算技术可为车载用户提供低时延、高带宽、高可靠性的应用服务.首先详细介绍了车载边缘计算卸载技术的背景、意义以及本文的贡献.其次,分别概述了车载边缘计算卸载技术的网络架构、主要挑战以及应用场景.然后,从移动分析、卸载模式、资源协作和管理等多个维度全面综述了车载边缘计算卸载技术的研究工作.最后,对车载边缘计算卸载技术的未来研究进行了展望,可对该领域深入的研究提供有价值的参考.  相似文献   

4.
随着计算密集和时延敏感型车辆应用的爆炸式增长,集中式云架构产生了高工作负载和任务时延阻塞。为了保证服务质量,车载边缘计算应运而生,这种计算模式将计算能力和存储资源,推移到离数据源更近的边缘服务器或边缘网关等边缘节点上,通过在边缘节点进行实时数据处理和决策,可以显著地减少数据传输时延。首先介绍了车载边缘计算的基本概念,接着对现有研究进行了梳理分类,最后讨论了对车载边缘计算的展望和未来研究方向。  相似文献   

5.
随着物联网的发展以及智能设备的普及,视频处理技术已广泛应用于生活中。自动驾驶、产品质检等应用场景对视频处理技术的实时性需求逐步提高,移动边缘计算为计算能力不足和能源受限的设备提供计算资源以执行时延敏感性任务,为实时视频处理提供了新的计算架构。本文搭建了一个视频计算卸载场景,并以视频检测为任务,以系统时延为优化目标,建立了计算卸载模型和马尔可夫决策模型;考虑到计算卸载场景的复杂动态因素,如带宽波动、设备数量、任务大小等,以最小化系统时延为目标,提出了一种基于深度强化学习的计算卸载策略进行求解。实验表明,与其他基线方案相比,该卸载策略能够适应较复杂卸载场景,有效降低系统时延。  相似文献   

6.
为了满足车载边缘计算网络(Vehicular Edge Computing,VEC)中低时延、高可靠、高传输速率等极致性能需求,亟需突破现有传统车联网中通信感知计算相互割裂的现状,基于云边端一体化与智能协同等算力网络技术设计一种高效的任务卸载策略成为解决方案。为此,提出一种云边协同智能驱动车载边缘算力网络架构,通过结合实时计算负载与网络状态条件,充分利用云中心、聚合服务器和MEC服务器的异构计算能力,权衡用户任务卸载策略,实现网络资源的全面协作和智能管理。考虑到计算型任务对时延和能耗的需求,将计算卸载策略建模为在通信与计算资源约束下的最小化长期系统成本的优化问题,并将其转化为马尔可夫决策过程(Markov Decision Process,MDP)。最后,鉴于车载网络的动态和随机特性,提出一种基于云边协同的深度Q网络(Cloud-Edge Collaborative Deep Q-Network,CEC-DQN)的高效计算卸载策略来解决MDP问题。仿真结果表明,与传统单点边缘服务器卸载或随机卸载算法相比,所提出的算法具有较高的性能提升,可有效解决多层次算力网络中节点算力分配不足、不均衡的问题。  相似文献   

7.
刘斐  曹钰杰  章国安 《电讯技术》2021,61(7):858-864
为了有效利用边缘云的计算资源,尽可能降低任务卸载时的平均等待时延,提出了一种满足边缘计算服务器容限阈值和任务卸载成功率约束条件下的多个边缘计算服务器相互协作的资源分配方案,通过单位时间总代价指标优化边缘计算服务器个数.将此方案建模为一个整数优化问题,之后设计了一种最小代价算法求解此优化问题,得到约束条件下的单位时间总代价以及任务平均等待时延.仿真结果表明,与已有方案相比,所提方案降低了单位时间总代价和任务卸载平均等待时延.  相似文献   

8.
移动边缘计算利用部署在用户附近基站或具有空闲资源的路侧单元、车辆和MEC服务器作为网络的边缘,为设备提供所需的服务以及云端计算能力,以减少网络操作和服务交付的时延。文章将移动设备和MEC服务器的任务分配问题描述为一对一的匹配博弈,解决了移动边缘计算中的任务卸载问题。文章提出的算法具有良好的扩展性,并且能够降低总体能耗,使任务卸载时延最小化。  相似文献   

9.
通过移动边缘计算下移云端的应用功能和处理能力支撑计算密集或时延敏感任务的执行成为当前的发展趋势。但面对众多移动终端用户时,如何有效利用计算资源有限的边缘节点来保障终端用户服务质量(QoS)成为关键问题。为此,该文融合边缘云与远端云构建了一种分层的边缘云计算架构,以此架构为基础,以最小化移动设备能耗和任务执行时间为目标,将问题形式化描述为资源约束下的最小化能耗和时延加权和的凸优化问题,并提出基于乘子法的计算卸载及资源分配机制解决该问题。实验结果表明,在计算任务量很大的情况下,提出的计算卸载及资源分配机制能够有效降低移动终端能耗,并在任务执行时延方面较局部计算与计算卸载机制分别降低最高60%与10%,提高系统性能。  相似文献   

10.
为了降低计算任务的时延和系统的成本,移动边缘计算(MEC)被用于车辆网络,以进一步改善车辆服务。该文在考虑计算资源的情况下对车辆网络时延问题进行研究,提出一种多平台卸载智能资源分配算法,对计算资源进行分配,以提高下一代车辆网络的性能。该算法首先使用K临近(KNN)算法对计算任务的卸载平台(云计算、移动边缘计算、本地计算)进行选择,然后在考虑非本地计算资源分配和系统复杂性的情况下,使用强化学习方法,以有效解决使用移动边缘计算的车辆网络中的资源分配问题。仿真结果表明,与任务全部卸载到本地或MEC服务器等基准算法相比,提出的多平台卸载智能资源分配算法实现了时延成本的显著降低,平均可节省系统总成本达80%。  相似文献   

11.
在车联网中引入V2V计算卸载技术可以缓解当前车载计算卸载热点地区路边单元(RSU)计算资源不足的问题.然而,在计算卸载过程中,服务车辆可能因故障离组或自主选择离开车组.如何返回任务结果并高效地分配计算任务是需要进一步研究的关键问题.提出了一个车组内计算任务分配算法,考虑了可能导致车辆离开车组的因素影响,以及组中每辆车能...  相似文献   

12.
With the development of the mobile communication technology, a wide variety of envisioned intelligent transportation systems have emerged and put forward more stringent requirements for vehicular communications. Most of computation-intensive and power-hungry applications result in a large amount of energy consumption and computation costs, which bring great challenges to the on-board system. It is necessary to exploit traffic offloading and scheduling in vehicular networks to ensure the Quality of Experience (QoE). In this paper, a joint offloading strategy based on quantum particle swarm optimization for the Mobile Edge Computing (MEC) enabled vehicular networks is presented. To minimize the delay cost and energy consumption, a task execution optimization model is formulated to assign the task to the available service nodes, which includes the service vehicles and the nearby Road Side Units (RSUs). For the task offloading process via Vehicle to Vehicle (V2V) communication, a vehicle selection algorithm is introduced to obtain an optimal offloading decision sequence. Next, an improved quantum particle swarm optimization algorithm for joint offloading is proposed to optimize the task delay and energy consumption. To maintain the diversity of the population, the crossover operator is introduced to exchange information among individuals. Besides, the crossover probability is defined to improve the search ability and convergence speed of the algorithm. Meanwhile, an adaptive shrinkage expansion factor is designed to improve the local search accuracy in the later iterations. Simulation results show that the proposed joint offloading strategy can effectively reduce the system overhead and the task completion delay under different system parameters.  相似文献   

13.
Vehicular cloud computing (VCC) provides a vehicular user attaching several resources with different types at the same time. Additionally, the vehicular applications especially for big data processing are always complicated and may be decomposed into several fine-grained tasks. When offloading the complicated multi-task application to the vehicular clouds, the task executes individually in terms of its own computation, storage and bandwidth requirement. Different from the task offloading in mobile cloud computing which aims to optimize the energy consumption, the important metric for vehicular users is the application delay. Moreover, the moving vehicles always have the similar resource properties and may form the solution clusters when finding the resource orchestration policy, which brings an opportunity of improving resource orchestration performance. In this paper, we formulate the VCC resource orchestration as an optimization problem, and propose a cluster-particle swarm optimization (PSO) algorithm to obtain the resource orchestration policy. A fast cluster algorithm is used to divide the solution space and generate sub-swarms for better exploring the orchestration solutions. The experiment results show that the cluster-PSO algorithm can achieve a higher resource orchestration accuracy in an acceptable time comparing to the other PSO algorithms. Especially, when there are more tasks in an application and the vehicle has more optional VCC resources, the performance of the cluster-PSO based resource orchestration is outstanding.  相似文献   

14.
In order to improve the efficiency of tasks processing and reduce the energy consumption of new energy vehicle (NEV), an adaptive dual task offloading decision-making scheme for Internet of vehicles is proposed based on information-assisted service of road side units (RSUs) and task offloading theory. Taking the roadside parking space recommendation service as the specific application Scenario, the task offloading model is built and a hierarchical self-organizing network model is constructed, which utilizes the computing power sharing among nodes, RSUs and mobile edge computing (MEC) servers. The task scheduling is performed through the adaptive task offloading decision algorithm, which helps to realize the available parking space recommendation service which is energy-saving and environmental-friendly. Compared with these traditional task offloading decisions, the proposed scheme takes less time and less energy in the whole process of tasks. Simulation results testified the effectiveness of the proposed scheme.  相似文献   

15.
针对车载环境下有限的网络资源和大量用户需求之间的矛盾,提出了智能驱动的车载边缘计算网络架构,以实现网络资源的全面协同和智能管理.基于该架构,设计了任务卸载和服务缓存的联合优化机制,对用户任务卸载以及计算和缓存资源的调度进行了建模.鉴于车载网络的动态、随机和时变的特性,利用异步分布式强化学习算法,给出了最优的卸载决策和资...  相似文献   

16.
为了应对车联网中计算资源密集、可分离型任务的卸载环境动态变化和不同协同节点通信、计算资源存在差异的问题,提出了一种在V2X下多协同节点串行卸载、并行计算的分布式卸载策略。该策略利用车辆可预测的行驶轨迹,对任务进行不等拆分,分布式计算于本地、MEC及协同车辆,建立系统时延最小化的优化问题。为求解该优化问题,设计了博弈论的卸载机制,以实现协同节点串行卸载的执行顺序;鉴于车联网的动态时变特性,利用序列二次规划算法,给出了最优的任务不等拆分。仿真结果表明,所提策略能够有效减少计算任务系统时延,且当多协同节点分布式卸载服务时,所提策略在不同的参数条件下仍然能够保持稳定的系统性能。  相似文献   

17.
为了应对车联网中计算资源密集、可分离型任务的卸载环境动态变化和不同协同节点通信、计算资源存在差异的问题,提出了一种在V2X下多协同节点串行卸载、并行计算的分布式卸载策略。该策略利用车辆可预测的行驶轨迹,对任务进行不等拆分,分布式计算于本地、MEC及协同车辆,建立系统时延最小化的优化问题。为求解该优化问题,设计了博弈论的卸载机制,以实现协同节点串行卸载的执行顺序;鉴于车联网的动态时变特性,利用序列二次规划算法,给出了最优的任务不等拆分。仿真结果表明,所提策略能够有效减少计算任务系统时延,且当多协同节点分布式卸载服务时,所提策略在不同的参数条件下仍然能够保持稳定的系统性能。  相似文献   

18.
Increasing demand in user-friendly, computationally efficient and sophisticated vehicles led automobile industries to manufacture them with efficient onboard sensors, communication devices, resource rich hardware. Vehicular resources provide infotainment on-the-go. In mere future, every vehicle is a resource full machine. The vehicular resources which include computing power, storage and internet connectivity can be shared among the vehicles or can be lend over the internet to various customers. Vehicles can comprehensively make use of the resources available with road-side units (RSU’s) to communicate with other vehicles and RSU’s. Vehicular communications are useful especially in situations of accidents (or) natural calamities. Vehicles can update the RSU’s with information regarding such events. This information can then be broadcasted to the vehicles in that area or path. The proposed scheme ensures secure and efficient communications among nodes in a hierarchy consisting of vehicles, RSU’s, RSU co-ordinators and Trusted authority. The approach outlined in the paper can be used to decrease the overhead involved in secure transfer of information during communication.  相似文献   

19.
To address the serious problem of delay and energy consumption increase and service quality degradation caused by complex network status and huge amounts of computing data in the scenario of vehicle-to-everything (V2X),a vehicular network architecture combining mobile edge computing (MEC) and software defined network (SDN) was constructed.MEC sinks cloud serviced to the edge of the wireless network to compensate for the delay fluctuation caused by remote cloud computing.The SDN controller could sense network information from a global perspective,flexibly schedule resources,and control offload traffic.To further reduce the system overhead,a joint task offloading and resource allocation scheme was proposed.By modeling the MEC-based V2X offloading and resource allocation,the optimal offloading decision,communication and computing resource allocation scheme were derived.Considering the NP-hard attribute of the problem,Agglomerative Clustering was used to select the initial offloading node,and Q-learning was used for resource allocation.The offloading decision was modeled as an exact potential game,and the existence of Nash equilibrium was proved by the potential function structure.The simulation results show that,as compared to other mechanisms,the proposed mechanism can effectively reduce the system overhead.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号