共查询到20条相似文献,搜索用时 265 毫秒
1.
雷达信号目标识别是智能感知领域的重要研究方向。传统方法在处理复杂场景和多目标识别时存在局限性,而深度学习方法以其强大的表达能力和自适应性在雷达信号目标识别中展现出巨大潜力。文章通过综合分析深度学习在雷达信号目标识别中的应用,探讨了数据预处理、深度学习模型选择、目标检测和分类方法、目标跟踪和预测方法以及深度学习与传统方法的融合策略等关键问题,重点讨论了深度学习模型的优化和改进方法。 相似文献
2.
3.
为了提高雷达辐射源信号的正确识别率以满足现代电子对抗的需求,该文提出了一种新的雷达辐射源信号识别方法。在过完备多尺度Spectrum原子库基础上,采用匹配追踪(MP)方法对信号进行原子分解,并通过FFT降低MP搜索过程的时间复杂性,在此基础上,对本征Spectrum原子参数进行有效降维,提取具有分类意义的原子特征向量,同步实现信号的自动分类和参数估计。实验结果表明,该方法在低信噪比环境下不仅可以获得高的信号类别正确识别率,同时具有准确的参数估计结果,证实了所提出方法的有效性。 相似文献
4.
基于多特征参数的雷达信号调制方式识别方法 总被引:1,自引:0,他引:1
提出一种以盒维数、信息维数、相像系数为分类特征识别雷达信号调制方式的方法.这些特征包含了信号的幅度、频率、相位、整体走势(或者轮廓)、波形复杂度和不规则度的细节信息,集中体现了不同调制方式的差异.同时,利用特征自身的类内距离小、类间距离大的特点先聚类分离部分调制方式,最后通过基于粗集的支持向量机分类器进一步分类识别.通过4种典型雷达辐射源信号的特征提取与分类识别的仿真试验,表明基于本方法的调制信号识别正确率高,具有一定的工程应用价值. 相似文献
5.
经济社会的腾飞发展,也带动了科学信息技术的进步.雷达就是运用无线电技术来实现信息存储的,因此雷达又称作是“无线电定位”.近年来,国家加深加快了对雷达信号的探索,雷达信号的个体识别更是作为重点课题进行研究.以贴近度为标准的雷达辐射源个体识别技术,最关键的是雷达“指纹”特征数据的选取、高精度测量以及识别算法.本文就将从雷达辐射源个体识别的信号概念,分析贴近度对于雷达信号的重要性,展开雷达信号个体识别方法的研究. 相似文献
6.
杨传广;陈路明;赵二虎;安竹林;徐勇军 《电子学报》2024,(10):3435-3447
知识蒸馏的核心思想是利用1个作为教师网络的大型模型来指导1个作为学生网络的小型模型,提升学生网络在图像分类任务上的性能.现有知识蒸馏方法通常从单一的输入样本中提取类别概率或特征信息作为知识,并没有对样本间关系进行建模,造成网络的表征学习能力下降.为解决此问题,本文引入图卷积神经网络,将输入样本集视为图结点构建关系图,图中的每个样本都可以聚合其他样本信息,提升样本的表征能力.本文从图结点和图关系2个角度构建图表征知识蒸馏误差,利用元学习引导学生网络自适应学习教师网络更佳的图表征,提升学生网络的图建模能力.相比于基线方法,本文提出的图表征知识蒸馏方法在加拿大高等研究院(Canadian Institute For Advanced Research,CIFAR)发布的100种分类数据集上提升了3.70%的分类准确率,表明本文方法引导学生网络学习到了更具有判别性的特征空间,提升了图像分类能力. 相似文献
7.
8.
在分析支持向量机识别原理和相控阵雷达信号特点的基础上,确定了用于分类识别的雷达特征参数,并给出了采用支持向量机来实现相控阵雷达信号识别的具体方法。仿真结果表明,使用一对一算法和多项式核函数的支持向量机分类器的方法对相控阵雷达信号的识别效果较好。 相似文献
9.
针对复杂电磁环境下多部雷达同时到达信号频域交叠时难以分选识别的问题,分析了信号交叠对于雷达信号识别模块性能的影响;在此基础上面向识别需求,基于Pearson算法研究了交叠信号分选的处理方法。从信息论视角来说,两个信号脉冲波形相关性越弱,则其所表达的信息量越大,特征相关度越低。在信号脉冲数一定时,基于Pearson算法可以选择相关性较弱的信号脉冲载波,以削弱同时信号交叠的影响。通过实验,发现利用选择后的弱相关信号脉冲载波特征来表达信号特性,能有效降低数据维度,尽可能减少信息丢失,有利于达到鲁棒的识别效果,因此该方法可为同时到达信号交叠下的信号识别提供有效途径参考。 相似文献
10.
11.
自然界中的生物需要在其一生中不断地学习并适应环境,这种持续学习的能力是生物学习系统的基础。尽管深度学习方法在计算机视觉和自然语言处理领域取得了重要进展,但它们在连续学习任务时面临严重的灾难性遗忘问题,即模型在学习新知识时会遗忘旧知识,这在很大程度上限制了深度学习方法的应用。持续学习研究对人工智能系统的改进和应用具有重要意义。该文对深度模型的持续学习进行了全面回顾。首先介绍了持续学习的定义和典型设定,阐述了问题的关键。其次,将现有持续学习方法划分为基于正则化、基于回放、基于梯度和基于网络结构4类,分析了各类方法的优点和局限性。同时,该文强调并总结了持续学习领域的理论分析进展,建立了理论与方法之间的联系。此外,提供了常用的数据集和评价指标,以公正评判不同方法。最后,从多个领域的应用价值出发,讨论了深度持续方法面临的问题、挑战和未来研究方向。 相似文献
12.
针对目前雷达欺骗干扰识别中常规特征识别方法应用受限和训练高性能深度学习模型需要的大量标注样本难以高效获取的问题,该文提出一种基于对抗域适应网络的雷达欺骗干扰识别方法,以改善标签限制;并融合注意力机制残差模块进一步提升识别精度。首先,对雷达接收信号进行时频变换后,应用基于对抗网络思想的域适应技术实现从标注源域样本到未标注目标域样本的迁移识别。其次,通过所设计的空间通道注意力残差模块使网络训练聚焦于时频图全局空间特征和高响应通道,以忽略时频图像中可迁移性低的区域抑制负迁移的产生。在不同源域与目标域雷达欺骗干扰数据集上的实验结果表明了该方法的可行性和有效性。 相似文献
13.
识别雷达信号的调制方式有助于分析雷达的工作模式和目的,为及时采取恰当的应对措施提供依据。长短时记忆网络(Long Short-Term Memory, LSTM)深度学习模型在基于特征的调制方式识别领域中有着广泛应用,但LSTM模型的时间性能会随着输入数据规模的增大而下降。针对以上问题,文中提出了一种基于注意力机制的双向长短时记忆网络(Bidirectional Long Short-Term Memory, BiLSTM)的雷达信号调制方式识别算法。该算法通过BiLSTM提取信号原始数据的特征,再使用注意力机制为学习到的特征分配相应权重,最后由分类器根据学习到的特征输出分类结果。使用Python框架构建基于注意力机制的BiLSTM网络模型,以雷达辐射源信号特征仿真数据作为网络的输入和训练基础,实现对辐射源的调制方式的识别。结果表明,该模型在识别雷达信号的调制方式方面具有良好的效果。 相似文献
14.
针对目前增量学习中所面向目标都是固定姿态这一现象,本文考虑了更严格的设定,即面向多姿态目标的在线类增量学习,并提出了无视姿态重放方法来缓解在线类增量学习中面对多姿态目标时的灾难性遗忘。首先,将2D/3D目标进行点云化处理,以方便提取目标的有效几何信息;其次,基于SE(d )(d = 2,3) 群对网络进行平移旋转等变性改进,使网络能够提取更丰富的几何信息,从而降低模型在每个任务中受目标姿态的影响;最后,根据损失变化采样特定样本用于重放来缓解灾难性遗忘。实验结果表明,在面对固定姿态目标MNIST、CIFAR-10时,本文方法的最终平均精度分别达到了88%和42.6%,与对比方法结果相近,但最终平均遗忘率明显优于对比方法,分别降低了约3%和15%。在面对多姿态目标RotMNIST、trCIFAR-10时,本文方法依旧能很好地保持在固定姿态目标中的表现,基本不受目标姿态的影响。此外,在3D数据集ModelNet40中的表现也依旧稳定。本文所提方法在在线类增量学习中能够不受目标姿态的影响,同时能缓解灾难性遗忘,具有很好的稳定性和可塑性。 相似文献
15.
雷达信号识别的GANN方法 总被引:3,自引:0,他引:3
利用神经网络方法进行雷达信号识别存在两个问题,一是难以选择最优的网络结构;二是用传统的BP学习算法,常常收敛到局部解。本文提出一种GANN方法,即首先利用遗传算法优化两层前馈神经网络结构以确定中间隐层的节点数,然后用遗传算法进行学习。通过与BP算法相比较,遗传算法不仅速度快,而且能找到最优解。实验表明,将GANN应用于雷达信号识别,识别率更高。 相似文献
16.
Deep neural networks have achieved great success in a wide range of machine learning tasks due to their excellent ability to learn rich semantic features from high-dimensional data. Deeper networks have been successful in the field of image quality assessment to improve the performance of image quality assessment models. The success of deep neural networks majorly comes along with both big models with hundreds of millions of parameters and the availability of numerous annotated datasets. However, the lack of large-scale labeled data leads to the problems of over-fitting and poor generalization of deep learning models. Besides, these models are huge in size, demanding heavy computation power and failing to be deployed on edge devices. To deal with the challenge, we propose an image quality assessment based on self-supervised learning and knowledge distillation. First, the self-supervised learning of soft target prediction given by the teacher network is carried out, and then the student network is jointly trained to use soft target and label on knowledge distillation. Experiments on five benchmark databases show that the proposed method is superior to the teacher network and even outperform the state-of-the-art strategies. Furthermore, the scale of our model is much smaller than the teacher model and can be deployed in edge devices for smooth inference. 相似文献
17.
To solve the problem of low sign language recognition rate under the condition of small samples, a simple and effective static gesture recognition method based on an attention mechanism is proposed. The method proposed in this paper can enhance the features of both the details and the subject of the gesture image. The input of the proposed method depends on the intermediate feature map generated by the original network. Also, the proposed convolutional model is a lightweight general module, which can be seamlessly integrated into any CNN(Convolutional Neural Network) architecture and achieve significant performance gains with minimal overhead. Experiments on two different datasets show that the proposed method is effective and can improve the accuracy of sign language recognition of the benchmark model, making its performance better than the existing methods. 相似文献
18.
The underlining task for fine-grained image recognition captures both the inter-class and intra-class discriminate features. Existing methods generally use auxiliary data to guide the network or a complex network comprising multiple sub-networks. They have two significant drawbacks: (1) Using auxiliary data like bounding boxes requires expert knowledge and expensive data annotation. (2) Using multiple sub-networks make network architecture complex and requires complicated training or multiple training steps. We propose an end-to-end Spatial Self-Attention Network (SSANet) comprising a spatial self-attention module (SSA) and a self-attention distillation (Self-AD) technique. The SSA encodes contextual information into local features, improving intra-class representation. Then, the Self-AD distills knowledge from the SSA to a primary feature map, obtaining inter-class representation. By accumulating classification losses from these two modules enables the network to learn both inter-class and intra-class features in one training step. The experiment findings demonstrate that SSANet is effective and achieves competitive performance. 相似文献
19.
雷达信号识别是雷达侦察与对抗中的重要内容,也是其难点,现有的识别方法都不能取得让人非常满意的识别效果。AdaBoost即自适应Boosting算法,它可以提高任意给定分类器的分类精度。本文用AdaBoost提升神经网络并应用于雷达信号识别,并与几种现有的识别方法作了比较。实验结果表明,其识别准确率比文中所列的所有方法都要高。 相似文献
20.
针对类增量学习(CIL)中的灾难性遗忘问题,该文提出一种不同类的数据流和特征空间双分离的类增量学习算法。双分离(S2)算法在1次增量任务中包含2个阶段。第1个阶段通过分类损失、蒸馏损失和对比损失的综合约束训练网络。根据模块功能对各类的数据流进行分离,以增强新网络对新类别的识别能力。通过对比损失的约束,增大各类数据在特征空间中的距离,避免由于旧类样本的不完备性造成特征空间被新类侵蚀。第2个阶段对不均衡的数据集进行动态均衡采样,利用得到的均衡数据集对新网络进行动态微调。利用实测和仿真数据构建了一个飞机目标高分辨率距离像增量学习数据集,实验结果表明该算法相比其它几种对比算法在保持高可塑性的同时,具有更高的稳定性,综合性能更优。 相似文献