首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
3.
Retinex理论是颜色恒常知觉的计算理论,可以用于图像清晰度严重失真状况下的图像增强.在研究Retinex算法的基础上,对低照度彩色图像失真中色彩恢复存在的问题进行研究,构建了一个恢复效果较好的色彩恢复函数——余弦色彩恢复函数.给出了处理后图像的自动补偿/增益方法以及补偿/增益中参数实际选取的经验值.对处理后的图像进行了质量评价分析,表明该恢复函数在处理低照度图像时具有较明显的改善效果.  相似文献   

4.
针对现有的低照度图像增强算法复杂度过高,文章基于卷积神经网络,对比已有的MSRCR算法,进行改进,从而弥补MSRCR算法的不足(如不具有自适应性,设计参数过多)。本文将图像转换到HSI空间,提取出其亮度分量I,将该分量输入到卷积神经网络中,获得增强后的亮度分量I,再将其转回到RGB空间。本文所使用的所有训练集均为室内无光照图片,图片具有亮度均匀、整体亮度偏暗的特点。在处理这一图片时,本文算法结果图像有更好的峰值信噪比和彩色图像信息熵,拥有更好的视觉效果。  相似文献   

5.
为提升低照度图像的饱和度,增强图像的视觉效果,对基于卷积神经网络的低照度图像增强方法设计与分析。进行低照度图像预处理,设定Reyinex卷积分辨目标,通过FRED-Net结构识别图像特征,进行BP神经元图像增强节点的布设,以此为基础,设计HSI双向卷积神经网络图像增强模型,建立注意力机制,采用合成处理实现低照度图像增强。最终的测试结果表明:与传统单质成像图像增强测试组、传统层级描述图像增强测试组相对比,文章所设计的卷积神经图像增强测试组最终得出的饱和度可以达到92%,表明该方法对于图像的增强效果更佳,具有实际的应用价值。  相似文献   

6.
为解决当前低照度图像增强问题,提出了一种基于双残差卷积网络的图像增强算法.首先,根据Retinex理论模型,将正常照度图像合成低照度图像,再分别将它们分解在R(红)、G(绿)、B(蓝)3个分量上,然后通过特征提取模块和双残差模块学习低照度图像与正常照度图像在各分量的映射关系,获得各分量上的增强图像,最后合成增强的RGB...  相似文献   

7.
本文以高清户外直播技术为切入点,针对夜晚场景下受光照条件限制直播画面亮度低、不清晰的问题,提出了一种基于双路编解码器的卷积神经网络,应用于低照度图像增强和超分辨率,有效提升了户外直播的画面质量,降低了对传输带宽的需求,有利于提升户外直播的用户体验.  相似文献   

8.
邹良娜 《现代信息科技》2023,(5):113-115+119
通过对比不同图像增强算法,针对传统图像增强算法无法兼顾色彩、细节以及纹理的同步处理等问题,文章提出一种MSRCR-HIS图像增强算法,融合直方图转换法与MSRCR算法的优势,并将处理后的图像与原始图像进行融合以保留原图细节信息,通过验证,文章提出的算法与经典算法相比,能够有效地改善图像的呈现效果,有利于后续各项实验操作。  相似文献   

9.
使用图像增强方法和深度学习的方法可以提高低照度图像亮度,改善图像质量.文章首先对传统的低照度图像增强算法分类介绍,总结这些算法近年来的改进过程,然后重点介绍当下适用于低照度图像增强的网络模型,同时对这些网络结构和适用于该网络的部分方法进行梳理,最后介绍实验所需要的数据库与增强后图像的评价准则,提出了目前深度学习在该领域...  相似文献   

10.
低照度彩色图像增强在生活中起着重要作用,传统的低照度彩色图像增强算法往往会引起图像的不同程度失真。为了增强低照度彩色图像而又不引起图像失真,本文提出了一种新的低照度图像自适应对比度增强算法。将分数阶微积分、传统Retinex变分法与分段对数变换饱和度增强法相结合,构造一种新的分数阶Retinex图像增强算法。实验结果表明,该方法具有增强图像对比度的同时又能保持边缘和纹理细节的能力。与传统低照度图像增强算法相比,能突出图像的细节纹理信息,同时图像色度和亮度也有明显改善。  相似文献   

11.
针对新一代多普勒气象雷达的散射回波图像受非降雨等噪声回波干扰导致精细化短时气象预报准确度降低的问题,该文提出一种基于深度卷积神经网络(DCNN)的气象雷达噪声图像语义分割方法。首先,设计一种深度卷积神经网络模型(DCNNM),利用MJDATA数据集的训练集数据进行训练,通过前向传播过程提取特征,将图像高维全局语义信息与局部特征细节融合;然后,利用训练误差值反向传播迭代更新网络参数,实现模型的收敛效果最优化;最后,通过该模型对气象雷达图像数据进行分割处理。实验结果表明,该文方法对气象雷达图像的去噪效果较好,与光流法、全卷积网络(FCN)等方法相比,该文方法对气象雷达图像中真实回波和噪声回波的识别准确率高,图像的像素精度较高。  相似文献   

12.
杜兰  刘彬  王燕  刘宏伟  代慧 《电子与信息学报》2016,38(12):3018-3025
该文研究了训练样本不足的情况下利用卷积神经网络(Convolutional Neural Network, CNN)对合成孔径雷达(SAR)图像实现目标检测的问题。利用已有的完备数据集来辅助场景复杂且训练样本不足的数据集进行检测。首先用已有的完备数据集训练得到CNN分类模型,用于对候选区域提取网络和目标检测网络做参数初始化;然后利用完备数据集对训练数据集做扩充;最后通过四步训练法得到候选区域提取模型和目标检测模型。实测数据的实验结果证明,所提方法在SAR图像目标检测中可以获得较好的检测效果。  相似文献   

13.
现有的基于深度卷积神经网络(DCNN)实现的图像信息隐藏方法存在图像视觉质量差和隐藏容量低的问题。针对此类问题,该文提出一种基于两通道深度卷积神经网络的图像隐藏方法。首先,与以往的隐藏框架不同,该文提出的隐藏方法中包含1个隐藏网络和2个结构相同的提取网络,实现了在1幅载体图像上同时对2幅全尺寸秘密图像进行有效的隐藏和提取;其次,为了提高图像的视觉质量,在隐藏网络和提取网络中加入了改进的金字塔池化模块和预处理模块。在多个数据集上的测试结果表明,所提方法较现有的图像信息隐藏方法在视觉质量上有显著提升,载体图像PSNR和SSIM分别提高了3.75 dB和3.61%,实现的相对容量为2,同时具有良好的泛化能力。  相似文献   

14.
针对单一尺度卷积神经网络(CNN)对船舶图像分类的局限性,该文提出一种多尺度CNN自适应熵加权决策融合方法用于船舶图像分类.首先使用多尺度CNN提取不同尺寸的船舶图像的多尺度特征,并训练得到不同子网络的最优模型;接着利用测试集船舶图像在最优模型上测试,得到多尺度CNN的Softmax函数输出的概率值,并计算得到信息熵,...  相似文献   

15.
该文提出了基于超像素级卷积神经网络(sp-CNN)的多聚焦图像融合算法。该方法首先对源图像进行多尺度超像素分割,将获取的超像素输入sp-CNN,并对输出的初始分类映射图进行连通域操作得到初始决策图;然后根据多幅初始决策图的异同获得不确定区域,并利用空间频率对其再分类,得到阶段决策图;最后利用形态学对阶段决策图进行后处理,并根据所得的最终决策图融合图像。该文算法直接利用超像素分割块进行图像融合,其相较以往利用重叠块的融合算法可达到降低时间复杂度的目的,同时可获得较好的融合效果。  相似文献   

16.
该文提出了基于超像素级卷积神经网络(sp-CNN)的多聚焦图像融合算法。该方法首先对源图像进行多尺度超像素分割,将获取的超像素输入sp-CNN,并对输出的初始分类映射图进行连通域操作得到初始决策图;然后根据多幅初始决策图的异同获得不确定区域,并利用空间频率对其再分类,得到阶段决策图;最后利用形态学对阶段决策图进行后处理...  相似文献   

17.
为满足雷达舰船目标识别的高实时性和高泛化性的需求,该文提出了一种基于深度多尺度1维卷积神经网络的目标高分辨1维距离像(HRRP)识别方法。针对高分辨1维距离像特征提取难的问题,所提方法通过共享卷积核的权值,使用多尺度的卷积核提取不同精细度的特征,并构造中心损失函数来提高特征的分辨能力。实验结果表明,该模型可以显著提高目标在非理想条件下的识别正确率,克服目标姿态角敏感性问题,具有良好的鲁棒性和泛化性。  相似文献   

18.
色环电阻是印刷电路板(PCB)中最常用的电子元器件之一,主要依靠色环的排列顺序和颜色等视觉信息进行区分,易发生装配错误。但是色环电阻装配质量的人工检测方法效率低、误检率高,而传统的基于图像处理技术的自动检测方法鲁棒性较差,难以解决不同拍摄角度、物距及光照条件下的PCB板色环电阻检测问题。针对这一问题,该文提出一种基于卷积神经网络(CNN)的PCB板色环电阻自动检测与定位方法,首先采用编码器-解码器结构的卷积神经网络模型及带有权重的交叉熵损失函数的网络训练方法,较好地解决了复杂光照及场景下PCB板色环电阻的图像分割问题;然后采用最小面积外接矩形方法定位单个色环电阻,并通过仿射变换对色环电阻位置进行垂直校正;最后通过高斯模板匹配方法实现了色环电阻的色环定位。采用1270幅PCB图像对该文方法进行了实验和验证,并与传统的基于形态学和基于模板匹配的色环电阻检测方法进行了对比,结果表明,该文方法在召回率、准确率及重叠度等性能指标上具有明显优势,处理速度快,能满足实际应用要求。  相似文献   

19.
针对如何提高纸币识别率的问题,该文提出一种改进深度卷积神经网络(DCNN)的纸币识别算法。该算法首先通过融合迁移学习、带泄露整流(Leaky ReLU)函数、批量归一化(BN)和多层次残差单元构造深度卷积层,对输入的不同尺寸纸币进行稳定而快速的特征提取与学习;然后采用改进的多层次空间金字塔池化算法对提取的纸币特征实现固定大小的输出表示;最后通过网络全连接层和softmax层实现纸币图像分类。实验结果表明,该算法在分类性能、泛化能力与稳定性上明显优于常用的纸币分类算法;同时该算法也能够满足纸币清分系统的实时性要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号