首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
According to the distribution of abutment stress in a stope, this research established the mechanical model of mining abutment pressure transmission in floor base on the theory of semi-infinite plate body in elasticity. This study takes the 762 working face of Haizi Coal Mine as a case in point, and analyzed the dynamic evolution law of seam floor stress during the mining process. With an organic combination of the mining floor stress and surrounding rock stress, the study obtained the change laws of the maximum principle stress and the minimum one for the floor roadway surrounding rock when mining the upper working face. Considering the non-constant pressure force state and the cracks revolution mechanisms of floor roadway surrounding rock, the research built the mechanical model of roadway stress. Simulation results verify the reliability of the above conclusions. Moreover, this model could provide the theoretical basis and technical support for controlling floor roadway surrounding rock.  相似文献   

2.
According to the geological and mining conditions of deep high gas coal seam, this paper established the mechanical model of stope surrounding rock, and analyzed the stress distribution and deformation failure mechanism of working face and coal pillar. The research determined the arrangement mode that adjacent working faces retain wide pillar, and the reasonable support method of roadway that the combined support of roof and grouting combined together. The reasonable time of reinforced roadway was determined. Through analyzing the mechanical model of the ways of roadway supporting, this research drew the conclusions as follows: the combined support of roof and working slope improved the support strength and range of surrounding rock, optimized the support by adjusting the angle of anchor, and reached the support requirements by using cement grouting in working slope and chemical grout in roof. The technology was applied in 15104 working face of Baoan Mine, and obtained good results.  相似文献   

3.
“Riding mining” is a form of mining where the working face is located above the roadway and advances parallel to it. Riding mining in deep soft rock creates a particular set of problems in the roadway that include high stresses, large deformations, and support difficulties. Herein we describe a study of the rock deformation mechanism of a roadway as observed during riding mining in deep soft rock. Theoretical analysis, numerical simulations, and on site monitoring were used to examine this problem. The stress in the rock and the visco-elastic behavior of the rock are considered. Real time data, recorded over a period of 240 days, were taken from a 750 transportation roadway. Stress distributions in the rock surrounding the roadway were studied by comparing simulations to observations from the mine. The rock stress shows dynamic behavior as the working face advances. The pressure increases and then drops after peaking as the face advances. Both elastic and plastic deformation of the surrounding rock occurs. Plastic deformation provides a mechanism by which stress in the rock relaxes due to material flow. A way to rehabilitate the roadway is suggested that will help ensure mine safety.  相似文献   

4.
To determine the rational layout parameters of the lateral high drainage roadway(LHDR) serving for two adjacent working faces, a mechanical model of the LHDR under mining influence was established, and the overburden fissure, mining-induced stress distribution rules were analyzed. First, the development characteristics of mining-induced overburden fissure and the stress distribution law of the upper section of the working face were analyzed. Second, by analyzing the distribution law of vertical stress at different layers, the lateral distance of the LHDR was determined as 25 m. Third, by analyzing the surrounding rock deformation effect, stress distribution law, and overburden fissure distribution law of the LHDR at the heights of 20, 25, and 30 m away from the roof, the rational horizon of the LHDR was determined to be 25 m. Finally, an example of a LHDR located 25 m above the roof of the No. 2 coal seam and 25 m away from the No. 2-603 working face was presented. Results show that when the No. 2-603 coalface is being mined, the surrounding rocks lag 80 m or even further and the working face tends to be stable. The relative deformations of the roof and floor of the roadway and both of its walls were 583 and 450 mm,respectively. The reduction rate of the roadway section was 21.52%–25.32%. The section of the roadway was sufficient to extract the pressure relief gas in the overburden of the No. 2-605 working face. The average gas concentration and the pure volume at the branch pipeline were 24.8% and 22.3 m~3/min,respectively, showing that the position of high-level boreholes was reasonable.  相似文献   

5.
On-site investigations consistently show that the rock burst inherent to coal seams varies greatly with coal seam thickness. In this study, impact factors related to coal seam thickness and surrounding rock strength were analyzed and a corresponding rock burst risk assessment method was constructed. The model reflects the influence of coal seam thickness on the stress distribution of surrounding rock at the roadway. Based on the roadway excavation range, a stress distribution model of surrounding roadway rock is established and the influence of coal seam thickness on rock burst risk is analyzed accordingly. The proposed rock burst risk assessment method is based on the equivalent surrounding rock strength and coal seam bursting liability. The proposed method was tested in a 3500 mining area to find that it yields rock burst risk assessment results as per coal seam thickness that are in accordance with real-world conditions. The results presented here suggest that coal seam thickness is a crucial factor in effective rock burst risk assessment.  相似文献   

6.
综放回采巷道围岩力学特征实测研究   总被引:17,自引:1,他引:17  
通过对综放面回采巷道围岩的深部位移、表面位移、应力分布以及支架荷载的实测分析,得出综放面回采巷道围岩力学特征分布规律.研究表明,临近工作面巷道围岩处于支承压力降低区,支架荷载下降,但支架和围岩变形最剧烈,表明巷道围岩处于岩石峰后的力学状态.围岩变形主要发生支承压力影响区,合理的巷道支护应能控制采动影响剧烈阶段的围岩变形,顺槽支护设计理念应从载荷控制向变形控制转变.  相似文献   

7.
In order to study the rules of distribution in a plastic zone of rocks, surrounding a roadway, affected by tectonic stress, we first analyzed the mechanics of a roadway affected by tectonic stress and derived a theoretical formula for the plastic zone of rocks surrounding a roadway. We also analyzed the distribution characteristics of the plastic zone under different levels of tectonic stress, vertical pressure, cohesion and friction angle of the surrounding rock. Secondly, we used numerical simulation to analyze the range and shape features of the plastic zone of rocks surrounding the roadway, given different tectonic stress levels. Finally we used a rock drilling detector to carry out field measurements on the broken state of rock surrounding the roadway at the -700 substation and channels in the Xinzhuang mine of the Shenhuo mining area. Given the measured ground stress, we analyzed the relationship between tectonic stress and the distribution of this plastic zone. Our results show that the range of the plastic zone at the top and bottom of the roadway increases with an increase in tectonic stress and this increase is especially obvious at the roadway comer.  相似文献   

8.
超长"孤岛"综放面大煤柱护巷的数值模拟   总被引:10,自引:1,他引:10  
基于兖矿集团兴隆庄4324超长“孤岛”综放工作面开采条件,采用离散元数值计算程序UDEC3.0,模拟研究了不同宽度煤柱护巷条件下巷道围岩的应力分布和变形特征,分析了不同宽度煤柱的承载状况和应力峰值区的位置.研究表明,采用20m大煤柱维护巷道,可以改善巷道围岩应力环境;煤柱的承载能力适应超长“孤岛”综放工作面顶板的活动规律;围岩变形量小;能够保障巷道的整体稳定性和有效断面.通过现场实测,讨论了大煤柱维护巷道的矿压显现规律和对巷道的良好维护效果.  相似文献   

9.
This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone is formed by using high-pressure water jet to cut the coal wall in a continuous and rotational way. In order to study the influence law of weak structure zone in surrounding rock, this paper numerically analyzed the influence law of weak structure zone, and the disturbance law of coal wall and floor under dynamic and static combined load. The results show that when the distance between high-pressure water jet drillings is 3 m and the diameter of drilling is 300 mm, continuous stress superposition zone can be formed. The weak structure zone can transfer and reduce the concentrated static load in surrounding rock, and then form distressed zone. The longer the high-pressure water jet drilling is, the larger the distressed zone is. The stress change and displacement change of non-distressed zone in coal wall and floor are significantly greater than that of distressed zone under dynamic and static combined load. And it shows that the distressed zone can effectively control rock burst in roadway under dynamic and static combined load. High-pressure water jet technology was applied in the haulage gate of 250203 working face in Yanbei Coal Mine, and had gained good effect. The study conclusions provide theoretical foundation and a new guidance for controlling rock burst in roadway.  相似文献   

10.
The prevention and forecast of coal and gas outburst has always been one of the key issues in coal mining safety. By simulating the process of tunneling in coal seam with different dip angle through FLAC3D software, the dangerous zone in which outburst may occur and the probability of outburst near the working face were predicted through the distribution of stress, displacement and plastic zone. Then we discussed the size of unstable area in the surrounding rock through the distribution of stress and the variation curve of the displacement on the roadway wall. The results show that, with an increase of the coal seam dip angle, the risk of outburst in the working face rises gradually. And the dangerous areas in which may outburst occur moves to the upper part of coal seam. The size of unstable area in the surrounding rock increases with the increase of coal seam dip angle.  相似文献   

11.
In the non-uniform stress field, the surrounding rock plastic zone of the circular roadway shows different shapes under the different confining pressure conditions. Based on the boundary shape characteristics of the plastic zone, the characteristic radii of the plastic zone were proposed, namely the horizontal,longitudinal and medial axis radii, which could reflect the plastic zone shapes characteristics and classify the sizes of the key parts. On the theoretical basis of elastic-plastic mechanics, analytical solutions for the characteristic radii were obtained by theoretical deduction, and the relationships between the characteristic radii and key influencing factors were analyzed. Finally, the evaluation criterion of the circular roadway surrounding rock plastic zone shapes, evaluation criterion of the location of potential hazards caused by the roadway surrounding rock and evaluation critical points of roadway dynamic disasters based on characteristic radii were proposed. This work could provide a theoretical basis for stability analysis of the surrounding rock, support design, and guide the prevention and control of dynamic roadway disasters.  相似文献   

12.
为得出直墙拱形巷道围岩应力分布规律,应用复变函数弹性理论推导了直墙拱形巷道围岩应力分布的解析表达式。对直墙拱形巷道边界的围岩应力和巷道水平线方向的围岩应力分布规律进行分析,并考虑直墙拱形巷道断面高宽比和侧压系数对其影响规律。研究表明:在不同巷道断面高宽比、侧压系数下,直墙拱形巷道围岩应力集中区域主要集中在直墙底部底角处、拱形顶板中点附近和底板中部3个位置。不同巷道断面高宽比下,直墙拱形巷道沿水平线的应力分布规律基本相同。侧压系数大于1时,采用巷道断面高宽比小于1较有利于巷道稳定;侧压系数小于等于1时,采用巷道断面高宽比大于1较有利于巷道稳定。  相似文献   

13.
Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation characteristics of gob-side entry driving with narrow coal pillar is analysed, reasonable size of coal pillar and reasonable roadway excavation time after mining are achieved. Surrounding rock control technology and effective roadway side sealing technology are proposed and are taken into field practice. The results showed that a safer and more efficient mining of working face can be achieved. In addition, results of this paper also have important theoretical significance and valuable reference for surrounding rock control technology of gob-side entry driving with narrow coal pillar under special geological condition.  相似文献   

14.
In allusion to the problems of complex stress distribution in the surrounding rock and deformation failure laws, as well as the difficulty in roadway supporting of the gob-side entry driving in the island coal face, 2107 face in Chengjiao Colliery is researched as an engineering case. Through physical mechanical test of rock, theoretical and numerical simulation analyses of rock, the analysis model of the roadway overlying strata structure was established, and its parameters quantified. To reveal the deformation law of the surrounding rock, the stability of the overlying strata structure was studied before, during and after the roadway driving. According to the field conditions, the stress distribution in coal pillar was quantified, and the surrounding rock deformation feature studied with different widths of the pillars in gob-side entry driving. Finally, the pillar width of 4 m was considered as the most reasonable. The research results show that there is great difference in support conditions among roadway roof, entity coal side and narrow pillar side. Besides, the asymmetric control technique for support of the surrounding rock was proposed. The asymmetric control technique was proved to be reasonable by field monitoring, support by bolt-net, steel ladder and steel wire truss used in narrow pillar side.  相似文献   

15.
In order to study the strength-weakening law of roofs of water-rich roadway, this study used FLAC software, and simulated and analyzed the failure characteristics of the surrounding rock of water-rich roadway under the condition of different cross sections and support parameters, finally obtained the stress distribution of the principle stress of the roadway as well as the displacement variation of its surrounding rock. Results indicate that the roof stability of roadway with semicircular cross section is better than the roadway with inclined rectangular cross section under water-rich condition. Besides, the surrounding rock deformation of roadway under the action of water shows a pronounced increase compared to the roadway without the action of water due to the fact that water will obviously weaken the surrounding rock of roadway, especially its roof. It is very beneficial to control roof stability of water-rich roadway and guarantee the roadway stability during its service life by improving the pretension of bolt and cable as well as decreasing inter-row spacing of the bolt.  相似文献   

16.
为深入研究注浆锚固应力分布变化规律,以圆形隧道开挖为例,将注浆锚杆与周围浆体视作锚固体,分析锚固体受力特征,推导锚固体轴应力和剪应力表达式.通过理论分析和数值模拟对比证明理论解析的合理性,并分析不同影响因素下锚固体应力分布的变化规律,通过数值模拟与理论对比分析验证解析方法的可行性.锚固体两端轴应力均接近0,且在中性点处...  相似文献   

17.
Given the difficulties encountered in roadway support under coal pillars, we studied the characteristics of stress distribution and their effect on roadway stability, using theoretical analysis and numerical simulation. The results show that, under a coal pillar, vertical stress in a floor stratum increases while horizontal stress decreases. We conclude that the increased difference between vertical and horizontal stress is an important reason for deformation of the surrounding rock and failures of roadways under coal pillars. Based on this, we propose control technologies of the surrounding rock of a roadway under a coal pillar, such as high strength and high pre-stressed bolt support, cable reinforcement support,single hydraulic prop with beam support and reinforcement by grouting of the surrounding rock, which have been successfully applied in a stability control project of a roadway under a coal pillar.  相似文献   

18.
Deep beam anchorage structures based on spatial distribution analysis of the cable prestressed field have been proposed for roadway roof support. Stability and other factors that influence deep beam structures are studied in this paper using mechanical calculations, numerical analysis and field measurements. A mechanical model of deep beam structure subjected to multiple loading is established, including analysis of roof support in the return airway of S1203 working face in the Yuwu coal mine, China. The expression of maximum shear stress in the deep beam structure is deduced according to the stress superposition criterion. It is found that the primary factors affecting deep beam structure stability are deep beam thickness, cable pre-tension and cable spacing. The variation of maximum shear stress distribution and prestressed field diffusion effects according to various factors are analyzed using Matlabòand FLAC3D~(TM) software, and practical support parameters of the S1203 return airway roof are determined.According to the observations of rock pressure, there is no evidence of roof separation, and the maximum values of roof subsidence and convergence of wall rock are 72 and 48 mm, respectively. The results show that the proposed roof support design with a deep beam structure is feasible and achieves effective control of the roadway roof.  相似文献   

19.
深井工作面高温热害严重影响着煤矿的安全生产,而围岩散热是高温热害的主要热源体。为了探索高温围岩散热对巷道内通风风流温度的影响规律,以淮南矿业集团某高温工作面为工程背景,采用理论分析和数值模拟方法对工作面及两侧巷道内风流的温度场分布规律进行了研究,并与现场实测结果进行了对比分析。结果表明:1)随着巷道走向的延伸,巷道内风流的温度以e指数的形式呈增高趋势,巷道越长,在其末端风流温度越接近巷道围岩温度;2)在工作面与运输巷和轨道巷相交区域,由于风流涡旋效应,该区域风流热量不易散出,形成风流温度场与速度场的异常区域,也是回采工作面高温热害治理的关键区域。  相似文献   

20.
潘三矿西翼-810 m皮带机大巷(西二~西三段)受上下采空区的影响,其所处的工程条件复杂,巷道支护困难。对此,建立理论模型,对巷道围岩力学状态进行分析,得出围岩应力和损伤破裂半径的表达式。分析了在上下采空区的影响下,岩体卸压扰动和强度劣化对塑性损伤区及松动破裂区半径的影响。提出了锚网+锚索桁架+喷浆+注浆锚索注浆的复合支护技术,为上下采空区影响下的巷道提供一些支护指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号