首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
 采用CO吸附原位红外光谱对系列硫化态CoMo/Al2O3催化剂进行表征,获得了加氢脱硫催化剂活性相的信息,并将表征结果与微反加氢脱硫活性和选择性评价结果进行关联分析。结果表明,CoMoS和MoS2活性中心上吸附的CO数目的比值与HDS选择性具有良好的相关性;催化剂表面CoMoS相相对含量的增多有利于提高HDS的活性和选择性;CoMoS活性中心的强缺电子特性是CoMoS相有助于提高HDS活性和选择性的重要原因。  相似文献   

2.
以4,6-二甲基二苯并噻吩与1-甲基萘的混合体系为对象,考察Co-Mo/γ-Al_2O_3催化剂中n(Co)/n(Co+Mo)对其催化加氢脱硫反应的加氢脱硫活性、加氢脱硫选择性、芳烃饱和活性以及反应氢耗的影响,并采用H2-TPR、XRD、Raman、TEM、XPS等表征手段对催化剂进行分析表征。结果表明,当n(Co)/n(Co+Mo)为0.3时,Co-Mo/γ-Al_2O_3中金属组分与载体间相互作用力最弱,硫化态催化剂Co-Mo-S相的比例、活性金属Mo的硫化度最高,MoS_2片晶的平均长度最短。相应地,该催化剂的加氢脱硫活性、加氢脱芳活性、直接脱硫选择性达到最高值,同时脱除每摩尔硫的氢耗、脱除每摩尔硫时芳烃饱和反应的氢耗均最低,即H_2利用率最高。活性金属存在形态特别是Co-Mo-S活性相数量是影响催化剂加氢脱硫活性、加氢脱芳活性、加氢脱硫选择性以及H_2利用率的重要因素。  相似文献   

3.
采用常规透射电子显微技术(TEM)和扫描透射电子显微技术结合X射线能谱分析的测量技术(简称分析电子显微技术——AEM)对NiMo/Al2O3系工业加氢脱硫催化剂的氧化态和硫化态进行对比研究。结果表明,对于硫化态加氢脱硫催化剂,TEM可以给出清晰的活性相的形貌和分布信息,活性相条纹的长度、堆叠层数等活性相参数特征的统计与其催化活性具有良好的关联。通过AEM的Mapping技术对NiMo/Al2O3催化剂氧化态和硫化态活性组分Ni、Mo的微区成分分布的测定,可获得催化剂活性相前体和硫化态活性组分的成分分布信息,克服了单一TEM不能提供成分信息的缺点,增加了对催化剂制备过程中活性组分变化的了解。  相似文献   

4.
哌啶对MO/MCM-41催化剂上二苯并噻吩加氢脱硫反应的影响   总被引:2,自引:0,他引:2  
在固定床反应器上考察了哌啶对二苯并噻吩(DBT)的加氢脱硫(HDS)反应活性及反应路径的影响。反应所用催化剂为MCM-41分子筛担载的Co-Mo或Ni-Mo硫化物,MoO3的负载量为20%,Co(Ni)与Mo的摩尔比为0.75。反应前,催化剂用10% H2S和90% H2的混合气进行硫化,硫化温度为400℃,硫化时间为3 h。HDS反应压力为5.0 MPa,温度为260-340℃,催化剂用量为0.2 g。反应原料为含哌啶和DBT分别为0-0.3%和0.8%的十氢萘溶液,液时空速为27 h-1。研究结果表明,无论是在Co-Mo/MCM-41 催化剂上还是在Ni-Mo/MCM-41催化剂上进行DBT的HDS反应,少量哌啶的存在都会大幅度降低催化剂的活性。由DBT的HDS反应产物的选择性分析发现,哌啶对HDS的抑制作用主要体现在对加氢反应路径的毒害作用。随着反应温度的升高,哌啶的加氢脱氮活性提高,HDS的反应活性接近于原料中没有哌啶时的活性,说明哌啶的毒害作用可能是因为它与含硫化合物竞争吸附而低温下加氢脱氮活性较低所致。  相似文献   

5.
以新型多孔隙的氧化铝为载体,制备了Mo-Co型柴油超深度加氢脱硫催化剂,考察了其加氢脱硫(HDS)活性,并采用XRD、N2吸附-脱附、XPS、TEM、CO-FTIR等表征手段对氧化铝粉、载体及催化剂进行分析表征。结果表明,与工业催化剂相比,新催化剂中载体与活性金属间相互作用力较弱,该硫化态催化剂中的Co-Mo-S活性相比例和活性金属Mo的硫化度较高,MoS2片晶平均长度较短。相应的,该催化剂具有更好的HDS活性,其相对脱硫活性是工业催化剂的1.4倍,且在1500 h内精制油中硫质量分数始终小于10μg/g,表明该催化剂具有优异的活性稳定性,显示出良好的工业应用前景。  相似文献   

6.
采用共沉淀法和水热法制备非负载型Ni-Mo-W加氢脱硫催化剂,利用XRD、BET、HRTEM、GC-PFPD表征手段对催化进行表征。结果表明,共沉淀法制备的氧化态催化剂的活性组分具有良好的分散性;水热法制备氧化态催化剂具有较高比表面积、较大孔容、孔径。不同制备方法对硫化态催化剂的晶型结构、比表面积、孔容和孔径影响不大。硫化态催化剂具体较大的比表面积、孔容和孔径,较高的MoS_2和Ni_3S_2晶相堆叠层数。在连续固定高压微反装置上考察了不同制备方法的硫化态催化剂的加氢脱硫活性。结果表明共沉淀法制备的硫化态催化剂的加氢脱硫率高达98.8%,催化剂具有良好的稳定性和催化活性,可持续反应550h。  相似文献   

7.
 采用常规透射电子显微技术(TEM)和扫描透射电子显微技术结合X射线能谱分析的测量技术(简称分析电子显微技术- —AEM)对NiMo/Al2O3系工业加氢脱硫催化剂的氧化态和硫化态进行对比研究。结果表明,对于硫化态加氢脱硫催化剂,TEM可以给出清晰的活性相的形貌和分布信息,活性相条纹的长度、堆叠层数等活性相参数特征的统计与其催化活性具有良好的关联。通过AEM的Mapping技术对NiMo/Al2O3催化剂氧化态和硫化态活性组分Ni、Mo的微区成分分布的测定,可获得催化剂活性相前体和硫化态活性组分的成分分布信息,克服了单一TEM不能提供成分信息的缺点,增加了对催化剂制备过程中活性组分变化的了解。  相似文献   

8.
采用透射电子显微技术(TEM)、扫描透射结合X射线能谱分析技术(STEM-EDS)以及三维重构技术(3D TOMO)对加氢脱硫催化剂的精细结构进行了综合分析。通过TEM分析可以获得硫化态加氢脱硫催化剂活性相的分散状况及几何参数等信息,采用STEM-EDS技术可获得硫化态下催化剂中活性金属元素在堆垛内外的分布信息,3D TOMO技术可构造硫化态催化剂的三维空间形貌,显示活性相条纹堆垛的空间形貌特征。透射电子显微技术表征加氢催化剂的综合方法对深化加氢催化剂的理解和新型催化剂的开发提供了支持。  相似文献   

9.
在工业催化剂FHUDS-5(Co-Mo/Al2O3)和FHUDS-6(Ni-Mo/Al2O3)上,模拟工业柴油加氢工艺,考察了喹啉对二苯并噻吩(DBT)加氢脱硫(HDS)活性的影响,还讨论了喹啉抑制DBT加氢脱硫反应的机理。结果表明,喹啉对DBT的HDS反应有强烈抑制作用,对加氢路径(HYD)的抑制作用大于对氢解路径(DDS)的抑制作用;反应温度高于300℃时,在同一温度下,喹啉对在Co-Mo/Al2O3及Ni-Mo/Al2O3催化剂上DBT加氢脱硫反应活性的影响不同;当氢分压大于4.8 MPa时,在同一氢分压下,喹啉对在Co-Mo/Al2O3及Ni-Mo/Al2O3催化剂上DBT加氢脱硫反应活性的影响不同。  相似文献   

10.
在本文中制备了六种不同金属含量的Ni-Mo型催化剂并用N2吸附和X-射线衍射方法表征其物化性质。催化剂的活性相微结构采用拉曼光谱、程序升温还原(TPR)、X-射线光电子能谱和高分辨透射电镜方法表征。其加氢脱硫(HDS)活性则在滴流床微反装置上评价。分析结果表明:Mo元素的硫化度和MoS2晶片长度仅随着催化剂活性金属含量提高略有增加。这一微弱变化是因为所有催化剂其氧化态时Mo元素均以同样的聚氧钼粒子形态存在。然而,NiSx硫化度和MoS2晶片层数的较大增加则要归功于金属-载体间逐渐减弱的相互作用力。这一相互作用力是根据TPR变化结果得到。催化剂的HDS活性随着活性中心数目的提高而增加,然而对于较高的金属含量催化剂,其HDS活性趋于稳定,这是由于硫原子难于接触到活性中心而导致的。这一变化是由于金属含量增加致使催化剂的比表面积和孔容随之下降,以及过多层MoS2晶片随金属含量增加而大量生成所导致的。  相似文献   

11.
在硫化温度623 K下,硫化压力在20~80 MPa 范围内改变时,考察了硫化压力对含和不含柠檬酸的NiW/Al2O3催化剂的4〖DK〗,6 二 甲基二苯并噻吩(4〖DK〗,6 DMDBT)加氢脱硫催化活性的影响,并采用X射线光电子能谱 (XPS)和高分辨透射电镜(HRTEM)对硫化态催化剂进行了表征。结果表明,在20~60 MPa 范围,两个催化剂的加氢脱硫催化活性均随硫化压力增加而提高,且从20 MPa增加至40 MPa时,活性增幅最大。当硫化压力超过60 MPa后,前者活性仍继续上升,而后者活性则 变化很小。相同条件下,前者的脱硫活性均高于后者。 随着硫化压力的提高,催化剂中W物 种硫化度上升,WS2微晶数量增多,长度变短,而WS2微晶堆叠层数则呈现先升后降趋势 。催化剂脱硫活性与W物种硫化度关联度较高,并受到WS2微晶形貌变化的影响。柠檬酸的 存在促进了W物种的硫化,并导致生成数量更多、长度较长、堆叠层数较高的WS2微晶 。  相似文献   

12.
采用固定床微反装置对一工业CoMo/Al2O3催化剂在不同压力下进行硫化,并对硫化态催化剂进行了加氢脱硫活性评价;借助高分辨透射电镜(TEM)、X射线光电子能谱(XPS)等手段对硫化态催化剂进行了表征。TEM结果表明,随着硫化压力的升高,MoS2片晶的堆积层数和长度均有所增加,有利于减弱活性金属与载体间的强相互作用。XPS结果表明,随着硫化压力的升高,催化剂的硫含量以及硫化程度均逐渐增大,有利于催化剂活性的提高。此外,4.0 MPa压力下反应18 h后催化剂的XPS表征结果表明,由于反应压力比硫化压力有所提高,对催化剂存在补充硫化的作用。催化剂活性评价结果证实了TEM与XPS表征结果,在硫化压力4.0 MPa、反应温度360 ℃时催化剂的加氢脱硫活性最高,脱硫率达到99.5%。  相似文献   

13.
采用分步浸渍法制备了Au-Ni/SiO_2双金属催化剂,以含体积分数1%噻吩的正己烷为原料,考察了Au与Ni负载量(质量分数)、硫化温度与硫化时间、反应温度、液态空速、氢气与原料油的体积比(氢油比)等因素对Au-Ni/SiO_2催化剂加氢脱硫活性的影响;采用N_2吸附和TPR方法对Au-Ni/SiO_2催化剂进行了表征。实验结果表明,Au-Ni/SiO_2催化剂中Au和Ni的负载量均对催化剂的加氢脱硫活性有一定影响,Au的加入明显提高了催化剂的加氢脱硫活性;硫化程度较高的Au-Ni/SiO_2催化剂具有较好的加氢脱硫活性;Au-Ni/SiO_2催化剂的比表面积及孔结构不是影响该催化剂活性的主要因素;Au和Ni的负载量分别为1.5%和5.0%的Au-Ni/SiO_2催化剂在400℃下硫化120min,在常压、反应温度400℃、液态空速低于3.6h~(-1)、氢油比2000的条件下具有良好的加氢脱硫活性。  相似文献   

14.
以孔饱和浸渍法制备不同Ni/(Ni+V)原子比的NiV/Al2O3催化剂,并对催化剂进行拉曼光谱和H2-程序升温还原(H2-TPR)表征。以科威特常压渣油为原料,考察不同Ni/(Ni+V)原子比的NiV/Al2O3催化剂的渣油加氢脱金属和脱硫活性。研究结果表明:Ni可促进V的聚集,减弱V与载体间的相互作用;Ni与V具有协同作用,Ni/(Ni+V)原子比为0.25时,催化剂的渣油加氢脱金属活性明显高于其它Ni/(Ni+V)原子比的催化剂,渣油加氢脱硫活性略高于其它Ni/(Ni+V)原子比的催化剂。  相似文献   

15.
利用直馏柴油加氢脱硫反应研究初活稳定过程对NiMo/Al2O3催化剂加氢脱硫活性稳定性的影响。分别采用干法和湿法两种硫化方式制备的NiMo/Al2O3催化剂在初活稳定条件下处理48 h。对比评价了无初活稳定和经48 h初活稳定处理工况下催化剂活性以及积炭量发生的变化。借助XPS,TEM,TG-MASS和碳含量分析等方法对样品进行了表征。结果表明:采用干法或湿法硫化,初活稳定过程均可以提高新鲜硫化后NiMo/Al2O3催化剂的稳定性;初活稳定过程促进了活性相上积炭量的增加,而这些积炭的存在可起到适度修饰活性相表面结构的作用,有助于提高催化剂的稳定性。  相似文献   

16.
以γ-Al2O3为载体,采用等体积浸渍法分别制备了H2SO4,Ni(NO3)2,Ni(NO3)2-H2SO4,NiSO4改性的加氢脱硫催化剂。采用X射线衍射、N2吸附-脱附、H2-程序升温还原、紫外-拉曼光谱、X射线光电子能谱和反应性能评价等方法研究了硫酸根对Ni/γ-Al2O3催化剂的物性和催化噻吩加氢脱硫选择性的影响。结果表明:含硫酸根前躯体制备的Ni/γ-Al2O3催化剂的加氢脱硫活性和选择性高于Ni(NO3)2前躯体制备的催化剂;NiSO4前躯体制备催化剂的加氢脱硫活性和选择性最高,较Ni(NO3)2制备的催化剂分别提高了19百分点和78%。催化活性的差异与催化剂中Ni的形态相关,硫酸根的存在一方面减弱了Ni与载体间的相互作用,另一方面提供了镍原位自硫化的硫化剂,形成的硫化镍物种与NiSO4是催化剂的活性中心,其脱硫活性和选择性明显高于引入硫化剂硫化的催化剂。  相似文献   

17.
活化温度对NiW/Al_2O_3催化剂中金属-载体相互作用的影响   总被引:1,自引:1,他引:0  
考察了活化温度对NiW/Al_2O_3催化剂4,6-二甲基二苯并噻吩加氢脱硫活性和金属-载体相互作用的影响。研究结果表明,350~400℃是催化剂获得高脱硫活性的适宜活化温度,在该温度下对催化剂进行活化有利于金属.载体之间保持适度的相互作用,并促进W金属的硫化。高温活化(450℃)会导致Ni与氧化铝载体的相互作用增强,生成尖晶石物相,破坏Ni-W-O混合相物种,使金属W不易硫化,导致催化剂活性下降。  相似文献   

18.
MCM-41作载体制备磷化钼加氢脱硫催化剂   总被引:1,自引:0,他引:1  
通过原位还原方法制备了MCM-41担载的MoP催化剂并用TPR和XRD方法对其进行了表征。选用二苯并噻吩(DBT)作模型化合物,考察了催化剂的加氢脱硫(HDS)反应活性和产物分布。结果表明,MoP/MCM-41催化剂的HDS反应活性明显高于MoP/Al2O3催化剂,从加氢脱硫产物分布看,DBT在MoP/Al2O3催化剂上主要通过直接脱硫路径脱硫,而在MoP/MCM-41催化剂上,直接脱硫和预加氢脱硫路径都发挥了重要作用。由中性和碱性浸渍液制备催化剂的HDS活性相当,高于用酸性浸渍液制备的催化剂。  相似文献   

19.
加氢脱硫(HDS)催化剂NiMoS活性相表面非化学计量硫(Sx)物种的动态变化是HDS活性的决定因素。在HDS过程中,Sx物种处于动态平衡,且这一平衡与催化剂、H2S分压及硫化温度相关。笔者采用程序升温的方法研究了催化剂载体、助剂Ni、硫化温度、H2S分压对NiMoS催化剂表面Sx物种的影响。结果表明:催化剂载体对Sx物种的总量和还原性具有显著影响,Ni的引入显著促进Sx物种还原,提升HDS活性;硫化气相H2S分压决定了催化剂表面Sx物种含量,气相中H2S分压升高易使Sx物种增多,表面可利用NiMoS活性位减少,从而导致HDS活性降低。Sx物种含量与H2S分压及硫化温度的关系符合热力学平衡及van′t Hoff等压方程,进一步将Sx物种含量与HDS反应速率系数进行关联,提出H2S分压Sx物种含量HDS活性之间的定量关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号