首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An automatic purge and trap apparatus, coupled to a GC-MS was used to study the seasonal variability of the volatile fraction of raw milk Manchego cheese. Both season and dairy significantly affected abundance of most volatile compounds. Most aldehydes, methyl ketones, n-alcohols, and secondary alcohols reached significantly higher concentrations in spring cheeses. Branched chain alcohols showed significantly higher concentrations in autumn and winter cheeses, while significantly higher amounts of diketones were found in summer cheeses. Most ethyl esters reached higher concentrations in spring and winter cheeses and lower in autumn cheeses. Lower concentrations of alpha-pinene were found in spring cheeses, and higher amounts of limonene were observed in winter cheeses. Heptane and octane were significantly more abundant in summer cheeses. No significant seasonal differences were found either for quality or intensity scores.  相似文献   

2.
Changes in nitrogen compounds during ripening of 40 batches of Manchego cheese made from raw milk (24 batches) or pasteurized milk (16 batches) at five different dairies throughout the year were investigated. After ripening for six months, degradation of p-kappa- and beta-caseins was more intense in raw milk cheese and degradation of alpha(s2)-casein in pasteurized milk cheese. Milk pasteurization had no significant effect on breakdown of alpha(s1)-casein. Hydrophobic peptide content did not differ between raw and pasteurized milk cheese, whereas hydrophilic peptide content was higher in raw milk cheese. There were no significant differences between seasons for residual caseins, but hydrophobic peptides were at a higher level in cheese made in autumn and winter and hydrophilic peptides in cheese made in winter and spring. Raw milk cheese had a higher content of total free amino acids and of most individual free amino acids than pasteurized milk cheese. The relative percentages of the individual free amino acids were significantly different for raw milk and pasteurized milk cheeses. The relative percentages of Lys and lie increased, while those of Val, Leu and Phe decreased during ripening. There were also seasonal variations within the relative percentages of free amino acids. In raw milk cheeses, Asp and Cys were relatively more abundant in those made in autumn, Glu and Arg in cheeses made in winter, and Lys and Ile in cheeses made in spring and summer. Biogenic amines were detected only in raw milk cheese, with the highest levels of histamine, tryptamine and tyramine in cheeses made in spring, winter and spring, respectively.  相似文献   

3.
Two groups of kasseri cheese (pasta filata type) were manufactured from raw or pasteurized ewes' milk, without starter cultures. Cheeses of each group were divided into two subgroups: the first was ripened and stored at 4°C and packaged in plastic film; the second ripened and stored at 15°C and coated with paraffin wax. Milk pasteurization and technological parameters had a significant effect on the pH ( P  < 0.05), while only technological parameters had an effect on the total solids content. At day 120, the range of mean cfu/g counts for the mesophilic aerobic flora was 9.5 × 107−1.4 × 108; for the thermophilic streptococci, the range was 2.6 × 107−7.6 × 107; and for the thermophilic bacilli, 9.8 × 106−1.7 × 107. Changes in the N fractions became significant after 30 days of ripening. For mature 120-day-old cheeses, the percentage of total N soluble at pH 4.6 was 22.7%–22.9% in raw milk cheeses and 19.0%–21.7% in pasteurized milk cheeses. The percentage of total N soluble at 12% TCA was 10.1%–12.2% in raw milk cheeses and 7.3%–11.5% in pasteurized milk cheeses; the percentages of total N soluble at 5% PTA were 3.1%–4.0% and 2.6%–3.6%, respectively. The residual αs-casein percentages at day 120 ranged between 63% and 78% of the respective area at day 1; the residual β-casein ranged between 67% and 75%. There were some characteristic differences in the reverse phase-HPLC peptide profiles of the four cheeses. In general, the effect of the different ripening conditions was more pronounced in cheeses made from pasteurized milk.  相似文献   

4.
Primary and secondary proteolysis of goat cheese made from raw (RA), pasteurized (PA; 72 °C, 15 s) and pressure-treated milk (PR; 500 MPa, 15 min, 20 °C) were examined by capillary electrophoresis, nitrogen fractionation and HPLC peptide profiles. PA milk cheese showed a more important hydrolysis (P<0.05) of αs1-casein than RA milk cheese at the first stages of ripening (15 days), while PR milk cheese had a level between those seen in PA and RA milk cheeses. Degradation of β-casein was more important (P<0.05) in PA and PR than in RA milk cheeses at 15 days of ripening. However, from thereon β-casein in PR and RA milk cheeses was hydrolyzed at essentially similar rates, but at lower rates (P<0.05) than in PA milk cheeses. Pressure treatment could induce proteolysis of β-casein in a way, which is different from that produced by heat treatment. There was an increase in 4.6-soluble nitrogen (WSN) and in trichloroacetic acid (TCASN) throughout ripening in cheeses, but higher contents (P<0.05) in PA and PR milk cheeses at the end of ripening were observed. PR milk cheeses contained considerably higher content (P<0.05) of free amino acids than RA or PA milk cheeses. In general, heat and pressure treatments had no significant effect on the levels of hydrophobic and hydrophilic peptides.  相似文献   

5.
《Food microbiology》2001,18(1):45-51
The bacteriological quality during ripening of raw (RA), pasteurized (PA; 72°C, 15 s) and pressure-treated (PR; 500 MPa, 20°C, 15 min) goat milk assessed by enumeration of total bacteria, psychrotrophic bacteria, Enterobacteriaceae, lactobacilli, enterococci, Micrococcaceae and lactococci was evaluated. The high pressure treatment applied was as efficient as pasteurization in reducing the bacterial population of milk. Experimental cheeses were made from RA, PA and PR milks to study the microbial population during ripening. Lactobacilli and lactococci were the predominant microbiota present during ripening in all the cheeses. There were no differences in numbers of starter bacteria during ripening. However, lactobacilli counts for RA milk cheese were significantly higher than for PA and PR cheeses in all the ripening stages studied. Micrococcaceae and enterococci remained at a secondary level, and no differences were observed between cheeses at the end of ripening. On the other hand, the number of Enterobacteriaceae decreased during ripening, but faster in PR milk cheese than in PA and RA milk cheeses. The results of this study suggest that goat cheese made from PR milk had similar microbiological characteristics to PA milk cheeses.  相似文献   

6.
Canestrato Pugliese cheeses were produced from raw ewes' milk (R and R(II) cheeses), pasteurized ewes' milk (P cheese) and by heating the curd in hot whey according to a traditional protocol (T cheese). R(II) differed from R cheese mainly by having been produced from raw milk with a higher number of somatic cells, 950.000 vs. 750.000 ml(-1), respectively. Compared to P and T cheeses, R and R(II) cheeses had a higher concentration (one or two orders of magnitude) of cheese-related bacteria such as adventitious mesophilic lactobacilli, enterococci and staphylococci. At the end of ripening, all cheeses contained less than 1.0 log cfu g(-1) of total and fecal coliforms, and Escherichia coli and Staphylococcus aureus were not detected. As shown by phenotypic identification and RAPD-PCR, R cheese contained the largest number of mesophilic lactobacilli species and the greatest diversity of strains within the Lactobacillus plantarum species. Primary proteolysis did not differ appreciably among the cheeses. On the contrary, both urea-PAGE and the RP-HPLC analyses of the water-soluble N fractions showed the more complex profiles in cheeses produced by raw milks. R and R(II) cheeses had the highest values of water-soluble N/total N (ca. 30%) and the highest concentration of total free amino acids (ca. 40 mg g(-1) which approached or exceeded those reported for Italian cheeses with very high level of proteolysis during ripening. The main differences between R-R(II) and P-T cheeses were the concentrations of aspartic acid, proline, alanine, isoleucine, histidine and lysine. The water-soluble extracts of R and R(II) cheeses contained levels of amino-, imino- and di-peptidase activities, which were about twice those found in P and T cheeses. Cheeses differed slightly in the concentration of total free fatty acids that ranged between 1673 and 1651 mg kg(-1) in R and R(II) cheeses, and 1397 and 1334 mg kg(-1) in P and T cheeses. Butyric, caproic, capric, palmitic, oleic and linoleic acids were found at the highest concentrations.  相似文献   

7.
8.
The influence of two proteinases (Bacillus subtilis neutral proteinase and Micrococcus sp. cysteine proteinase) and two starter culture levels (0.1% and 1%) on biogenic amine formation has been studied in raw ewes' milk Manchego cheese. Amino acid decarboxylating micro-organisms were determined on tyrosine enriched selective media. Biogenic amines were analysed by capillary electrophoresis in citrate buffer at pH 3.6. Addition of proteinases and level of starter culture did not influence the population of micro-organisms with amino acid decarboxylating activity, which represented on average 1% of the bacterial population in 30-day-old cheeses. Tyramine and histamine were detected in all batches of cheese from day 30. Concentrations of tyramine and histamine were higher in cheeses made from milk with neutral proteinase (up to 356 and 284 mg kg(-1), respectively, after 90 days) than in cheeses made from milk with cysteine proteinase (up to 269 and 189 mg kg(-1), respectively) or with no proteinase added (up to 305 and 226 mg kg(-1), respectively). Formation of tyramine and histamine was also favoured in cheeses made with 1% starter culture with respect to cheeses made with only 0.1% starter culture, probably due to the higher pH values of the former cheeses. After 90 days of ripening, concentrations of 10-20 mg kg(-1) phenylethylamine were observed in 9 of the 12 batches, and levels < 10 mg kg(-1) tryptamine were only detected in 3 batches, with no significant relationship between the concentration of these amines and proteinase addition or level of starter culture.  相似文献   

9.
The production of volatile compounds by wild strains of Lactococcus lactis used as starter cultures and their effect on the sensory characteristics of ewes' raw milk cheese were investigated. Sixteen vats of cheese were manufactured and ripened for 120 d in two experiments, each of them duplicated. In the first experiment, milk was inoculated with different ratios of four wild Lactococcus lactis strains, two producing and two not producing branched-chain volatile compounds, and in the second experiment with different ratios of a commercial starter culture and the two strains producing branched-chain volatile compounds. Cheese pH, proteolysis, and aminopeptidase activity increased when the strains producing branched-chain volatile compounds were inoculated at a higher rate. Fifty volatile compounds were identified in cheeses using a purge and trap system coupled to a gas chromatography-mass spectrometry apparatus. The relative abundances of 30 volatile compounds (8 alcohols, 5 aldehydes, 3 ketones, 12 esters, 1 sulfur compound, and 1 benzenic compound) were influenced by starter culture composition. 2-Methylpropanol, 3-methylbutanol, isobutyl acetate, isoamyl acetate, ethyl butyrate, isobutyl butyrate, and isoamyl butyrate were always more abundant in the cheeses made with a higher level of L. lactis strains producing branched-chain volatile compounds. Flavor intensity was enhanced by a high level of L. lactis strains producing branched-chain volatile compounds in the first experiment, in which four wild L. lactis strains were used as starter culture, but not in the second experiment, in which a combination of two wild L. lactis strains and the commercial starter culture were used. Flavor quality, as judged by trained panelists, was impaired in both experiments by a high level of L. lactis strains producing branched-chain volatile compounds.  相似文献   

10.
High-pressure homogenization (HPH) of milk was studied as an alternative processing operation in the manufacturing of queso fresco cheese. Raw and pasteurized (65°C for 30 min) milks were subjected to HPH at 0, 100, 200, and 300 MPa and then used to manufacture queso fresco. The cheeses were evaluated for yield, moisture content, titratable acidity, nitrogen content, whey protein content, yield force, yield strain, and tactile texture by instrumental or trained panel analyses. The combination of HPH and thermal processing of milk resulted in cheeses with increased yield and moisture content. The net amount of protein transferred to the cheese per kilogram of milk remained constant for all treatments except raw milk processed at 300 MPa. The highest cheese yield, moisture content, and crumbliness were obtained for thermally processed milk subjected to HPH at 300 MPa. The principal component analysis of all measured variables showed that the variables yield, moisture content, and crumbliness were strongly correlated to each other and negatively correlated to the variables yield strain, protein content (wet basis), and sensory cohesiveness. It is suggested that the combination of thermal processing and HPH promotes thermally induced denaturation of whey protein, together with homogenization-induced dissociation of casein micelles. The combined effect results in queso fresco containing a thin casein-whey matrix that is able to better retain sweet whey. These results indicate that HPH has a strong potential for the manufacture of queso fresco with excellent yield and textural properties.  相似文献   

11.
The ability of Salmonella Enteritidis to survive in the presence of phage, SJ2, during manufacture, ripening, and storage of Cheddar cheese produced from raw and pasteurized milk was investigated. Raw milk and pasteurized milk were inoculated to contain 10(4) CFU/ml of a luminescent strain of Salmonella Enteritidis (lux) and 10(8) PFU/ml SJ2 phage. The milks were processed into Cheddar cheese following standard procedures. Cheese samples were examined for Salmonella Enteritidis (lux), lactic acid bacteria, molds and yeasts, coliforms, and total counts, while moisture, fat, salt, and pH values were also measured. Salmonella Enteritidis (lux) was enumerated in duplicate samples by surface plating on MacConkey novobiocin agar. Bioluminescent colonies of Salmonella Enteritidis were identified in the NightOwl molecular imager. Samples were taken over a period of 99 days. Counts of Salmonella Enteritidis (lux) decreased by 1 to 2 log cycles in raw and pasteurized milk cheeses made from milk containing phage. In cheeses made from milks to which phage was not added, there was an increase in Salmonella counts of about 1 log cycle. Lower counts of Salmonella Enteritidis (lux) were observed after 24 h in pasteurized milk cheese containing phage compared to Salmonella counts in raw milk cheese with phage. Salmonella Enteritidis (lux) survived in raw milk and pasteurized milk cheese without phage, reaching a final concentration of 10(3) CFU/g after 99 days of storage at 8 degrees C. Salmonella did not survive in pasteurized milk cheese after 89 days in the presence of phage. However, Salmonella counts of approximately 50 CFU/g were observed in raw milk cheese containing phage even after 99 days of storage. In conclusion, this study demonstrates that the addition of phage may be a useful adjunct to reduce the ability of Salmonella to survive in Cheddar cheese made from both raw and pasteurized milk.  相似文献   

12.
The changes in composition and some biochemical properties of Örgü cheeses made from raw (RMC) and pasteurized (PMC) cow milk were investigated during a 90-day ripening period. The average contents of total solids (TS), protein, water soluble nitrogen (WSN), trichloro-acetic acid soluble nitrogen (TCA-SN) and acid degree value (ADV) were lower, while salt and salt in TS were found to be statistically higher in PMC than RMC (P < 0.05). In addition, in both RMC and PMC, the TS and protein contents were decreased as compared to an increase in salt, salt in TS, WSN and TCA-SN contents, and ADV, during ripening (P < 0.05). The evaluation of WSN, TCA-SN and ADV shows that these two experimental Örgü cheese types undergo little proteolysis and lipolysis. On the other hand, acidity development was observed to be high in both before curdling and in cheese made from raw milk during ripening.  相似文献   

13.
The combined effect of ultrasonication and heat treatment on microbiological, chemical and sensory properties of raw, thermized and pasteurized milk was studied. Microbiological parameters monitored included total viable counts and psychrotrophs, chemical parameters included thiobarbituric acid and volatiles determination and sensory evaluation included the monitoring of odour and taste as a function of storage time. Results showed a 1–2.1 log cfu mL?1 reduction in total viable counts and psychrotrophs for raw, thermized and pasteurized milk up to 6 days of storage. For raw and pasteurized milk ultrasonication resulted in a taste score equal to or lower than that of untreated milk. However, thermized milk, ultrasonicated for 2 min gave a higher taste score than its untreated counter part on day 4 of storage. With regard to lipid oxidation, malondialdehyde ranged between 1.20 and 1.95 mg kg?1. Finally, volatile compounds identified in all samples were mainly products of lipid oxidation that increased in concentration with sonication and storage time.  相似文献   

14.
The availability and application of culture-independent tools that enable a detailed investigation of the microbiota and microbial biodiversity of food systems has had a major impact on food microbiology. This review focuses on the application of DNA-based technologies, such as denaturing gradient gel electrophoresis (DGGE), temporal temperature gradient gel electrophoresis (TTGE), single stranded conformation polymorphisms (SSCP), the polymerase chain reaction (PCR) and others, to investigate the diversity, dynamics and identity of microbes in dairy products from raw milk. Here, we will highlight the benefits associated with culture-independent methods which include enhanced sensitivity, rapidity and the detection of microorganisms not previously associated with such products.  相似文献   

15.
Microbiological quality and biochemical changes of Kashkaval cheese manufactured using sheep's raw milk without starter addition or pasteurised milk with an added commercial starter were studied. Mature cheeses had pH values 5.0–5.3, salt content 2.1–2.7%, protein content 23.3–25.1%, moisture content 36.8–39.5%, fat content 28.0–32.2%, and ash content around 5.0%. In raw milk cheeses, mesophilic non-starter lactobacilli prevailed followed by enterococci. In pasteurised milk cheeses Lactococcus lactis starter prevailed. All cheeses were safe according to the criteria in Regulation (EC) 1441/2007. The proteolysis index was around 20%. Butyric, myristic, palmitic, stearic and oleic were the principal free fatty acids in both cheeses. Ketones were abundant in pasteurised milk cheeses and esters in mature raw milk cheeses. Pasteurisation did not affect (P > 0.05) the physicochemical composition and the proteolysis of cheeses. Raw milk cheeses showed higher levels (P < 0.05) of lipolysis than pasteurised milk cheeses.  相似文献   

16.
Milk was concentrated by ultrafiltration (UF) or vacuum condensing (CM) and milks with 2 levels of protein: 4.5% (UF1 and CM1) and 6.0% (UF2 and CM2) for concentrates and a control with 3.2% protein were used for manufacturing 6 replicates of Cheddar cheese. For manufacturing pasteurized process cheese, a 1:1 blend of shredded 18- and 30-wk Cheddar cheese, butter oil, and disodium phosphate (3%) was heated and pasteurized at 74°C for 2 min with direct steam injection. The moisture content of the resulting process cheeses was 39.4 (control), 39.3 (UF1), 39.4 (UF2), 39.4 (CM1), and 40.2% (CM2). Fat and protein contents were influenced by level and method of concentration of cheese milk. Fat content was the highest in control (35.0%) and the lowest in UF2 (31.6%), whereas protein content was the lowest in control (19.6%) and the highest in UF2 (22.46%). Ash content increased with increase in level of concentration of cheese milk with no effect of method of concentration. Meltability of process cheeses decreased with increase in level of concentration and was higher in control than in the cheeses made with concentrated milk. Hardness was highest in UF cheeses (8.45 and 9.90 kg for UF1 and UF2) followed by CM cheeses (6.27 and 9.13 kg, for CM1 and CM2) and controls (3.94 kg). Apparent viscosity of molten cheese at 80°C was higher in the 6.0% protein treatments (1043 and 1208 cp, UF2 and CM2) than in 4.5% protein treatments (855 and 867 cp, UF1 and CM1) and in control (557 cp). Free oil in process cheeses was influenced by both level and method of concentration with control (14.3%) being the lowest and CM2 (18.9%) the highest. Overall flavor, body and texture, and acceptability were higher for process cheeses made with the concentrates compared with control. This study demonstrated that the application of concentrated milks (UF or CM) for Cheddar cheese making has an impact on pasteurized process cheese characteristics.  相似文献   

17.
《International Dairy Journal》2007,17(9):1139-1147
A total of nine Protected Designation of Origin hard and semi-hard cheese varieties were selected for this study, all made with raw ewes’ milk. The cheeses selected were Idiazabal and Roncal from Spain, Ossau-Iraty from France, and Pecorino Sardo, Pecorino Romano and Fiore Sardo from Italy. This ring trial was designed as a first step to validate a consensually designed standardized guide for ewes’ milk hard and semi-hard cheese texture evaluation and assess main differences among five sensory panels using this guide. Several univariate and multivariate statistical techniques were employed for data treatment. Each of the sensory attributes was relevant and understood similarly by all the panelists. The sensory attributes more relevant to the discrimination of the cheeses were friability, adhesiveness, solubility and moisture in mouth. The development of standardized and consensual sensory tools has been proven to provide consistent results among the participating panels.  相似文献   

18.
Three batches of Manchego cheese were manufactured using one of the following starter culture systems: (1) a defined strain starter culture comprising Lactococcus lactis subsp. lactis and Leuconostoc mesenteroides subsp. dextranicum; (2) the above-defined strain starter culture and an adjunct culture (Lactobacillus plantarum), all these strains being isolated from high-quality Manchego cheeses and (3) a commercial starter consisting of two strains of Lactococcus lactis. Differences in volatile profile and the sensory characteristics of these cheeses were studied. After 4 months of ripening, the two batches of cheese made with the defined strain starter cultures obtained the highest scores for sensory attributes and for the overall impression. Additionally, Purge & Trap and SDE analysis showed a more complex volatile profile in these cheeses than in those made with the commercial starter. Extending the maturation time to 8 months for cheeses made with the defined starter cultures led to significant higher levels of free fatty acids and ethyl esters in those cheeses made without adjunct culture. However, panelists did not find significant differences among the sensory characteristics of the two cheeses.  相似文献   

19.
The Foot-and-Mouth Disease virus (FMDV) is not a public health threat, but it is highly contagious to cloven-footed animals. The virus is shed into milk up to 33 h before there are apparent signs of the disease in dairy cows, and, in extreme cases, signs of disease may not appear for up to 14 d. During this time, raw milk can serve as a vector for spread of the disease both at the farm and during transport to the processing plant by milk tanker. Raw milk and milk products fed to animals have the potential to cause infection, but the potential for pasteurized milk products to cause infection is largely unknown. Current minimum pasteurization standards may not be adequate to eliminate FMDV in milk completely. The purpose of this paper is to assess the literature on the thermal resistance of FMDV in milk and milk products, to identify the risks associated with ingestion of pasteurized products by animals, and to lay a strategy to prevent the spread of FMDV from contaminated milk.  相似文献   

20.
阐述了一种以三电极体系为基础,研究溶液体系特性的高性能传感器阵列的设计原理和方法。它涵括了循环伏安法扫描、差分脉冲伏安法扫描、常规脉冲伏安法扫描、多电位阶跃扫描等多种功能等,能够对溶液体系施加多种方式的激发信号,得到多种相应特性,从而实现对溶液的全面分析。对新鲜生乳、熟乳(巴氏乳)、酸败乳溶液进行循环伏安法、脉冲伏安法、多电位阶跃等扫描方法检测,并进行主成分分析表征。研究结果表明,传感器阵列对生乳、熟乳(巴氏乳)、酸败乳有明显的辨别能力,不同的工作电极通过不同的检测方法对乳样有不同的区分力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号