首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
SO2-4/TiO2固体超强酸催化剂上的酯化反应研究   总被引:14,自引:5,他引:14  
通过沉淀、老化、过虑、洗涤、干燥、浸渍和焙烧等过程,从TiCl4和H2SO4制备了SO2-4/TiO2固体超强酸;用Hammett指示剂法和吡啶吸附的FT-IR光谱法测定了其酸强度和酸中心类型;以脂肪酸和脂肪醇为探针反应,研究了催化剂预处理温度对催化性能及反应物分子结构对酯化反应的影响.研究结果表明,当预处理温度在425~575 ℃范围内,SO2-4/TiO2催化剂体系可以形成固体超强酸,同时表面上存在Lewis酸中心和Bronsted酸中心,并且Lewis酸中心和Bronsted酸中心可以相互转化;SO2-4/TiO2在酯化反应中表现出良好的催化活性,但随着脂肪酸和脂肪醇的碳原子数增加或支链度增大,脂肪酸的转化率下降.  相似文献   

2.
SO_4~(2-)/TiO_2固体超强酸催化剂的表面化学研究   总被引:9,自引:0,他引:9  
通过沉淀、老化、过滤、洗涤、干燥、浸渍和焙烧等过程,从TiCl4和H2SO4制备了SO42-/TiO2固体超强酸。用XRD、LRS方法研究了SO42-/TiO2和TiO2的本体和表面结构;用化学分析法、Hammett指示剂滴定法和吡啶吸附的FT-IR光谱法测定了SO42-/TiO2的S含量、酸强度、酸中心类型和SO42-/TiO2表面上SO42-与TiO2表面的结合形式;用XPS测定了SO42-/TiO2的能量。研究结果表明,当预处理温度在425~575℃内,SO42-/TiO2催化剂体系可以形成固体超强酸,同时其表面上存在Lewis酸中心和Bronsted酸中心,并且Lewis酸中心和Bronsted酸中心可以相互转化;在本体中和表面上主要呈金红石结构,并没有Ti(SO4)2和TiOSO4的晶型存在;SO42-/TiO2表面上的OH为Bronsted酸中心,Ti4+上的空位为Lewis酸中心,SO42-以齿桥的形式与Ti4+配位,由于S+6的强吸电子能力而产生强的电子诱导效应,从而产生超强酸中心。  相似文献   

3.
通过沉淀、老化、过滤、洗涤、干燥、浸渍和焙烧等过程,从TiCl4和H2SO4制备了SO2-4/TiO2固体超强酸;用Hammett指示剂法和吡啶吸附的FT-IR光谱法测定了其酸强度和酸中心类型;以邻苯二酚和异丁醛为原料,经过缩合、重排合成了呋喃酚;考察了催化剂的焙烧温度、用量和原料配比对反应的影响。结果表明,当焙烧温度在425~575℃,SO2-4/TiO2样品可以形成固体超强酸体系,同时表面上存在Lewis酸中心和Bronsted酸中心,并且Lewis酸中心和Bronsted酸中心可以相互转化;SO2-4/TiO2固体超强酸在呋喃酚的合成中具有较高的催化活性、催化速率快、化学稳定性好、无环境污染。在该实验条件下,邻苯二酚的转化率达到51.8%,呋喃酚的收率可达30%,其纯度为99.2%。  相似文献   

4.
SO_4~(2-)/TiO_2固体超强酸催化剂上的酯化反应研究   总被引:10,自引:0,他引:10  
通过沉淀、老化、过虑、洗涤、干燥、浸渍和焙烧等过程 ,从TiCl4和H2 SO4制备了SO2 -4/TiO2 固体超强酸 ;用Hammett指示剂法和吡啶吸附的FT -IR光谱法测定了其酸强度和酸中心类型 ;以脂肪酸和脂肪醇为探针反应 ,研究了催化剂预处理温度对催化性能及反应物分子结构对酯化反应的影响。研究结果表明 ,当预处理温度在4 2 5~ 5 75℃范围内 ,SO2 -4/TiO2 催化剂体系可以形成固体超强酸 ,同时表面上存在Lewis酸中心和Bronsted酸中心 ,并且Lewis酸中心和Bronsted酸中心可以相互转化 ;SO2 -4/TiO2 在酯化反应中表现出良好的催化活性 ,但随着脂肪酸和脂肪醇的碳原子数增加或支链度增大 ,脂肪酸的转化率下降  相似文献   

5.
SO2-4/TiO2固体超强酸催化合成呋喃酚   总被引:2,自引:0,他引:2  
通过沉淀、老化、过滤、洗涤、干燥、浸渍和焙烧等过程,从TiCl4和H25O4制备了SO2-4/TiO2固体超强酸;用Hammett指示剂法和吡啶吸附的FT-IR光谱法测定了其酸强度和酸中心类型;以邻苯二酚和异丁醛为原料,经过缩合、重排合成了呋喃酚;考察了催化剂的焙烧温度、用量和原料配比对反应的影响.结果表明,当焙烧温度在425~575℃,SO2-4/TiO2样品可以形成固体超强酸体系,同时表面上存在Lewis酸中心和Bronsted酸中心,并且Lewis酸中心和Bronsted酸中心可以相互转化;SO2-4/TiO2固体超强酸在呋喃酚的合成中具有较高的催化活性、催化速率快、化学稳定性好、无环境污染.在该实验条件下,邻苯二酚的转化率达到51.8%,呋喃酚的收率可达30%,其纯度为99.2%.  相似文献   

6.
制备了SO4 2 -/ZrO2 固体超强酸催化剂 ,用Hammett指示剂法和吡啶吸附的FT -IR光谱法测定了其酸强度和酸中心类型 ;以邻二甲苯和苯乙烯生成 1-苯基 - 1- (3,4-二甲基苯基 ) -乙烷 (PXE)的烷基化为探针反应 ,研究了焙烧温度对催化性能的影响以及反应温度和苯乙烯的加料方式对产物收率的影响。结果表明 ,当焙烧温度高于 5 0 0℃ ,SO4 2 -/ZrO2 可以形成超强酸 ,其表面上同时存在Lewis酸中心和Bronsted酸中心 ;SO4 2 -/ZrO2 固体超强酸催化剂在邻二甲苯和苯乙烯的烷基化反应中表现出高催化活性 ,并没有苯乙烯的副反应发生 ;苯乙烯的加料方式对产物收率有明显影响 ;反应温度高于 10 0℃ ,反应温度对产物收率影响较小  相似文献   

7.
制备了SO4^2-/ZrO2固体超强酸催化剂,用Hammett指示剂法和吡啶吸附的FT-IR光谱法测定了其酸强度和酸中心类型;以邻二甲苯和苯乙烯生成1-苯基-1-(3,4-二甲基苯基)-乙烷(PXE)的烷基化为探针反应,研究了焙烧温度对催化性能的影响以及反应温度和苯乙烯的加料方式对产物收率的影响。结果表明,当焙烧温度高于500℃,SO4^2-/ZrO2可以形成超强酸,其表面上同时存在Lewis酸中心和Bronsted酸中心;SO4^2-/ZrO2固体超强酸催化剂在邻二甲苯和苯乙烯的烷基化反应中表现出高催化活性,并没有苯乙烯的副反应发生;苯乙烯的加料方式对产物收率有明显影响;反应温度高于100℃,反应温度对产物收率影响较小。  相似文献   

8.
邻二甲苯和苯乙烯在WO3/ZrO2固体超强酸的烷基化反应   总被引:5,自引:2,他引:5  
通过沉淀、老化、过滤、洗涤、干燥、浸渍、焙烧等过程,从ZrOCl2·8H2O和(NH4)6H2W12O40制备了WO3/ZrO2固体超强酸催化剂;用Hammett指示剂法和吡啶吸附的FT-IR光谱法测定了其酸强度和酸中心类型;研究了以邻二甲苯和苯乙烯制备1-苯基-1-(3,4-二甲基苯基)-乙烷(PXE)的烷基化反应,考察了催化剂的焙烧温度、WO3的负载量、反应温度、反应时间、催化剂用量对反应的影响以及催化剂稳定性.结果表明,在750~850 ℃,WO3的负载量为5%~15%的WO3/ZrO2体系可以形成超强酸,其表面上同时存在Lewis酸中心和Bronsted酸中心,并且可以相互转化;WO3/ZrO2固体超强酸催化剂在苯乙烯和邻二甲苯的烷基化反应中表现出良好的催化性能和稳定性;该反应的最佳实验条件为反应温度为100 ℃,n(邻二甲苯)/n(苯乙烯)=5.0,反应时间为5 h,催化剂用量为2.0 g.  相似文献   

9.
以醋酸和乙醇酯化为模型反应 ,考察了SO2 - 4/γ -Al2 O3,SO2 - 4/ZrO2 ,SO2 - 4/Fe2 O3等几种SO2 - 4/MxOy 型固体超强酸及其不同的制备方法对酯化反应催化活性的影响 ,得出以FeSO4 ·7H2 O在550℃下直接焙烧 ,所得SO2 - 4/Fe2 O3型固体超强酸催化活性最佳 ,且酯化反应主要为固体超强酸催化剂表面上的B酸中心所催化的结论。  相似文献   

10.
采用沉淀-浸渍法制备了SO42-/ZrO2-Al2O3,固体超强酸,研究了SO42-/ZrO2Al2O3固体超强酸催化苯甲酸与乙醇的酯化反应,结果表明最适宜的反应条件为锆铝摩尔比为l2,醇酸摩尔比为5,焙烧温度500~600℃,焙烧、反应各4 h,催化剂的用量为总量的6.64%.此外,还测定了含氯的固体酸的性能,比较了优化后的固体酸与浓硫酸催化性能.  相似文献   

11.
通过偏钨酸铵和氢氧化锆的润湿-浸渍法制备了WO3/ZrO2固体酸催化剂,对催化剂进行了表征,并在苯和1-十二烯的烷基化反应中进行了评价。考察了催化剂的焙烧温度、反应时间、WO3的质量分数、苯烯摩尔比、催化剂的质量分数等对烷基化反应的影响以及催化剂的再生性能。结果表明,焙烧温度在750~850℃,WO3的质量分数为5%~25%的WO3/ZrO2体系可以形成超强酸,其表面上同时存在L酸中心和B酸中心,并且可以相互转化。WO3/ZrO2固体超强酸催化剂在苯和1-十二烯的液相烷基化反应中表现出良好的催化性能和可再生性。反应的适宜条件为:反应时间为45 min,催化剂焙烧温度为750℃,WO3的质量分数为15%,苯与1-十二烯的摩尔比为10,催化剂的质量分数4%。在此条件下,1-十二烯的转化率为97.3%,LAB的选择性为93.7%,2-LAB的选择性为71.4%。  相似文献   

12.
制备了ZrO2/SO42-型固体超强酸催化剂,在该固体超强酸的催化作用下,由乳酸和异戊醇合成了乳酸异戊酯。探讨了焙烧温度、催化剂用量、反应时间和试剂摩尔比的影响,利用IR、质谱分析表征了乳酸异戊酯的结构。  相似文献   

13.
采用沉淀浸渍法制备复合固体超强酸催化剂SO24-/ZrO2-Al2O3-WO3,运用Hammett指示剂法、FT-IR、XRD、SEM、TGA和BET等对相应的催化剂进行表征,并研究了陈化温度、焙烧温度、浸渍液浓度等制备条件以及Al2O3、WO3等不同金属氧化物的引入对SO24-/ZrO2的影响。结果表明,低温陈化的试样具有较强的酸性和催化活性,添加Al2O3可增大催化剂的比表面积和酸度值,引入WO3有利于酸性的增强。复合固体催化剂SO42-/ZrO2-Al2O3-WO3的最佳制备方案是,陈化温度为-10℃、m(Al2O3)/m(ZrO2)为3.5、m(WO3)/m(ZrO2)为1、浸渍液(NH4)2SO4浓度为1.0 mol.L-1、焙烧温度为500℃。该催化剂用于乙酸正丁酯的合成,其酯化率达到98.5%。  相似文献   

14.
通过水热法制备出SO42-/ZrO2固体酸催化剂,对催化剂进行XRD、IR表征,并以冰乙酸和正丁醇的酯化反应为探针,探讨了各个因素对反应的影响.结果表明:当反应时间为2 h,n(正丁醇):n(冰乙酸)=2:1,催化剂用量为0.2%(占总物料的质量分数),酯化率可达99.1%.同时利用未经水热反应制备SO42-/ZrO2做对比实验,结果发现水热法比常规法制备的材料比表面积增加一倍.  相似文献   

15.
制备了超细固体超强酸SO42-/ZrO2,采用XRD、SEM、IR对该催化剂进行表征.以超细固体超强酸SO42-/ZrO2为催化剂,棕榈酸与乙醇为原料合成棕榈酸乙酯.探讨了不同催化剂类型、醇酸摩尔比、催化剂用量、反应时间等因素对转化率的影响.结果表明,与普通固体酸相比,超细固体超强酸SO42-/ZrO2对于棕榈酸乙酯的合成具有较好的催化性能.较适宜的反应条件为n(棕榈酸)∶n(乙醇)=4∶1,催化剂用量0.8 g,反应3 h.在此条件下,棕榈酸的收率可达70.3%.  相似文献   

16.
用XRD、LRS研究了ZrO2/SO2-4和ZrO2晶相。用N2吸附法、化学分析法和滴定法测定了ZrO2/SO2-4的比表面、S含量和酸强度,XPS测定ZrO2/SO2-4的能量。实验结果表明,SO2-4的存在延迟了ZrO2的晶变,提高了晶变温度,在ZrO2/SO2-4体系中不存在水和游离H2SO4,体系酸强度最高时ZrO2主要呈四方晶系。  相似文献   

17.
用溶胶凝胶法制备了固体超强酸,用XRD和SEM对其进行了表征,并用该固体超强酸催化合成了乙酸乙酯。结果表明:TiO2/SO24-的最佳焙烧时间为3 h,最佳焙烧温度为500℃,最佳浸渍浓度为1.5 mol/L;TiO2/SO24-催化酯化反应的最佳反应时间15 min,反应温度100-105℃,固体酸的投加量2%,最佳醇酸比1 1.3;并可重复使用,使之成为安全、绿色、环境友好的催化剂。  相似文献   

18.
论述了S02-4/ZrO2固体超强酸的制备及其制备条件对琥珀酸双辛酯酯化的影响,找出了最佳条件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号