首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 779 毫秒
1.
For the outputs of two nth-order linear control systems to work in synchronization and meanwhile to track their commands, a H∞synchronization control scheme is presented. In terms of two uncoupled single variable linear systems, a multivariable coupled system is established by choosing one output and the difference of the two outputs as a new output vector, so that both command tracking and synchronization properties can be demonstrated by a H∞performance index. To improve the synchronization and tracking performance and to guarantee the system robust stability, the mixed sensitivity H∞design methodology is adopted. The presented synchronization scheme is then extended to the case where one of the two systems include two input variables, and then applied to the position synchronization control of a wafer-retical stage. The wafer-reticle stage consists of a wafer stage, a reticle coarse stage, and a reticle fine stage. The reticle coarse stage picks up the reticle fine stage. The three stages ought to  相似文献   

2.
For the outputs of two nth-order linear control systems to work in synchronization and meanwhile to track their commands, a H∞ synchronization control scheme is presented. In terms of two uncoupled single variable linear systems, a multivariable coupled system is established by choosing one output and the difference of the two outputs as a new output vector, so that both command tracking and synchronization properties can be demonstrated by a H∞ performance index. To improve the synchronization and tracking performance and to guarantee the system robust stability, the mixed sensitivity H∞ design methodology is adopted, The presented synchronization scheme is then extended to the case where one of the two systems include two input variables, and then applied to the position synchronization control of a waferoretical stage. The wafer-reticle stage consists of a wafer stage, a reticle coarse stage, and a reticle fine stage. The reticle coarse stage picks up the reticle fine stage. The three stages ought to tack their commands, but synchronization between the wafer stage and the reticle fine stage must be stressed in the tracking process. In the application, by appropriately determining the weighting matrices for the sensitivity function and the complementary sensitivity function, a satisfactory H∞ synchronization controller is obtained to realize highly accurate position synchronization,and to guarantee tracking performance. The above results are verified by simulation experiments.  相似文献   

3.
The problem of H∞ stability analysis and control synthesis of switched systems with delayed states under arbitrary switching laws is considered.By means of Lyapunov function and linear matrix inequality tools,sufficient condition of H∞ stability is presented in terms of linear matrix inequalities.Furthermore,the robust H∞ control synthesis via state feedback and output feedback is studied.Finally,a numerical example is given to demonstrate the effectiveness of the proposed method.  相似文献   

4.
Currently most of control methods are of one degree of freedom(1-DOF) control structure for the robot systems which are affected by unmeasurable harmonic disturbances,at the same time in order to obtain perfect disturbance attenuation level,the controller gain must be increased.In practice,however,for robotic actuators,there are physical constraints that limit the amplitude of the available torques.This paper considers the problem of tracking control under input constraints for robot manipulators which are affected by unmeasurable harmonic disturbances.A new control scheme is proposed for the problem,which is composed of a parameter-dependent nonlinear observer and a tracking controller.The parameter-dependent nonlinear observer,designed based on the internal model principle,can achieve an estimation and compensation of a class of harmonic disturbances with unknown frequencies.The tracking controller,designed via adaptive control techniques,can make the systems asymptotically track the desired trajectories.In the control design,the continuous piecewise differentiable increasing function is used to limit control input amplitude,such that the control input saturation is avoided.The Lyapunov stability of closed loop systems is analyzed.To validate proposed control scheme,simulation results are provided for a two link horizontal robot manipulator.The simulation results show that the proposed control scheme ensures asymptotic tracking in presence of an uncertain external disturbance acting on the system.An important feature of the methodology consists of the fact that the designed controller is of 2-DOF control structure,namely,it has the ability to overcome the conflict between controller gain and robustness against external disturbances in the traditional 1 -DOF control structure framework.  相似文献   

5.
The tracking performance of motor current is an important factor that affects the assistance torque of electric power steering (EPS) system. Bad tracking performance will cause assistant torque delay, and make road feeling bad, and is influenced by the input steering torque and system measuring noise. However the existing methods have some shortages on system's robust dynamic performance and robust stability. The mixed H2/H∞ strategy for recirculating ball-type EPS system in a pure electric bus is proposed,...  相似文献   

6.
The new AUV driven by multi-vectored thrusters not only has unique kinematic characteristics during the actual cruise but also exists uncertain factors such as hydrodynamic coefficients perturbation and unknown interference of tail fluid,which bring difficult to the stability of the AUV’s control system.In order to solve the nonlinear term and unmodeled dynamics existing in the new AUV’s attitude control and the disturbances caused by the external marine environment,a second-order sliding mode controller with double-loop structure that considering the dynamic characteristics of the rudder actuators is designed,which improves the robustness of the system and avoids the control failure caused by the problem that the design theory of the sliding mode controller does not match with the actual application conditions.In order to avoid the loss of the sliding mode caused by the amplitude and rate constraints of the rudder actuator in the new AUV’s attitude control,the dynamic boundary layer method is used to adjust the sliding boundary layer thickness so as to obtain the best anti-chattering effects.Then the impacts of system parameters,rudder actuator’s constraints and boundary layer on the sliding mode controller are computed and analyzed to verify the effectiveness and robustness of the sliding mode controller based on dynamic boundary layer.The computational results show that the original divergent second-order sliding mode controller can still effectively implement the AUV’s attitude control through dynamically adjusting the sliding boundary layer thickness.The dynamic boundary layer method ensures the stability of the system and does not exceed the amplitude constraint of the rudder actuator,which provides a theoretical guidance and technical support for the control system design of the new AUV in real complex sea conditions.  相似文献   

7.
As the dynamic stiffness of radial magnetic bearings is not big enough,when the rotor spins at high speed,unbalance displacement vibration phenomenon will be produced.The most effective way for reducing the displacement vibration is to enhance the radial magnetic bearing stiffness through increasing the control currents,but the suitable control currents are not easy to be provided,especially,to be provided in real time.To implement real time unbalance displacement vibration compensation,through analyzing active magnetic bearings(AMB) mathematical model,the existence of radial displacement runout is demonstrated.To restrain the runout,a new control scheme-adaptive iterative learning control(AILC) is proposed in view of rotor frequency periodic uncertainties during the startup process.The previous error signal is added into AILC learning law to enhance the convergence speed,and an impacting factor influenced by the rotor rotating frequency is introduced as learning output coefficient to improve the rotor control effects.As a feed-forward compensation controller,AILC can provide one unknown and perfect compensatory signal to make the rotor rotate around its geometric axis through power amplifier and radial magnetic bearings.To improve AMB closed-loop control system robust stability,one kind of incomplete differential PID feedback controller is adopted.The correctness of the AILC algorithm is validated by the simulation of AMB mathematical model adding AILC compensation algorithm through MATLAB soft.And the compensation for fixed rotational frequency is implemented in the actual AMB system.The simulation and experiment results show that the compensation scheme based on AILC algorithm as feed-forward compensation and PID algorithm as close-loop control can realize AMB system displacement minimum compensation at one fixed frequency,and improve the stability of the control system.The proposed research provides a new adaptive iterative learning control algorithm and control strategy for AMB displacement minimum compensation,and provides some references for time-varied displacement minimum compensation.  相似文献   

8.
Because of the tire nonlinearity and vehicle's parameters'uncertainties,robust control methods based on the worst cases,such as H_∞,μsynthesis,have been widely used in active front steering control,however,in order to guarantee the stability of active front steering system(AFS)controller,the robust control is at the cost of performance so that the robust controller is a little conservative and has low performance for AFS control.In this paper,a generalized internal model robust control(GIMC)that can overcome the contradiction between performance and stability is used in the AFS control.In GIMC,the Youla parameterization is used in an improved way.And GIMC controller includes two sections:a high performance controller designed for the nominal vehicle model and a robust controller compensating the vehicle parameters'uncertainties and some external disturbances.Simulations of double lane change(DLC)maneuver and that of braking on split-μroad are conducted to compare the performance and stability of the GIMC control,the nominal performance PID controller and the H_∞controller.Simulation results show that the high nominal performance PID controller will be unstable under some extreme situations because of large vehicle's parameters variations,H_∞controller is conservative so that the performance is a little low,and only the GIMC controller overcomes the contradiction between performance and robustness,which can both ensure the stability of the AFS controller and guarantee the high performance of the AFS controller.Therefore,the GIMC method proposed for AFS can overcome some disadvantages of control methods used by current AFS system,that is,can solve the instability of PID or LQP control methods and the low performance of the standard H_∞controller.  相似文献   

9.
A modified skyhook-based semi-active controller is proposed for implementing an asymmetric control suspension design with symmetric magneto-rheological (MR) dampers. The controller is formulated in current form, which is modulated by integrating a continuous modulation and an asymmetric damping force generation algorithms, so as to effectively minimize switching and hysteretic effects from the MR-damper. The proposed controller is implemented with a quarter-vehicle MR-suspension model, and its relative response characteristics are thus evaluated in terms of defined performance measures under varying amplitude harmonic, rounded pulse and random excitations. The sensitivity of the semi-active suspension performance to variations in controller parameters is thoroughly evaluated. The results illustrate that the proposed skyhook-based asymmetric semi-active MR-suspension controller has superior robustness on the system parameter variations, and can achieve desirable multi-objective suspension performance.  相似文献   

10.
Yang  Yueneng  Wu  Jie  Zheng  Wei 《机械工程学报(英文版)》2012,25(6):1245-1254
The stratosphere airship provides a unique and promising platform for earth observation. Researches on the project design and control scheme for earth observation platforms are still rarely documented. Nonlinear dynamics, model uncertainties, and external disturbances contribute to the difficulty in maneuvering the stratosphere airship. A key technical challenge for the earth observation platform is station keeping, or the ability to remain fixed over a geo-location. This paper investigates the conceptual design, modeling and station-keeping attitude control of the near-space earth observation platform. A conceptual design of the earth observation platform is presented. The dynamics model of the platform is derived from the Newton-Euler formulation, and the station-keeping control system of the platform is formulated. The station-keeping attitude control approach for the platform is proposed. The multi-input multi-output nonlinear control system is decoupled into three single-input single-output linear subsystems via feedback linearization, the attitude controller design is carried out on the new linear systems using terminal sliding mode control, and the global stability of the closed-loop system is proven by using the Lyapunov theorem. The performance of the designed control system is simulated by using the variable step Runge-Kutta integrator. Simulation results show that the control system tracks the commanded attitude with an error of zero, which verify the effectiveness and robustness of the designed control system in the presence of parametric uncertainties. The near-space earth observation platform has several advantages over satellites, such as high resolution, fast to deploy, and convenient to retrieve, and the proposed control scheme provides an effective approach for station-keeping attitude control of the earth observation platform.  相似文献   

11.
The vehicle semi-active suspension with magneto-rheological damper(MRD) has been a hot topic since this decade, in which the robust control synthesis considering load variation is a challenging task. In this paper, a new semi-active controller based upon the inverse model and sliding mode control(SMC) strategies is proposed for the quarter-vehicle suspension with the magneto-rheological(MR) damper, wherein an ideal skyhook suspension is employed as the control reference model and the vehicle sprung mass is considered as an uncertain parameter. According to the asymptotical stability of SMC, the dynamic errors between the plant and reference systems are used to derive the control damping force acquired by the MR quarter-vehicle suspension system. The proposed modified Bouc-wen hysteretic force-velocity(F-v) model and its inverse model of MR damper, as well as the proposed continuous modulation(CM) filtering algorithm without phase shift are employed to convert the control damping force into the direct drive current of the MR damper. Moreover, the proposed semi-active sliding mode controller(SSMC)-based MR quarter-vehicle suspension is systematically evaluated through comparing the time and frequency domain responses of the sprung and unsprung mass displacement accelerations, suspension travel and the tire dynamic force with those of the passive quarter-vehicle suspension, under three kinds of varied amplitude harmonic, rounded pulse and real-road measured random excitations. The evaluation results illustrate that the proposed SSMC can greatly suppress the vehicle suspension vibration due to uncertainty of the load, and thus improve the ride comfort and handling safety. The study establishes a solid theoretical foundation as the universal control scheme for the adaptive semi-active control of the MR full-vehicle suspension decoupled into four MR quarter-vehicle sub-suspension systems.  相似文献   

12.
The current investigations primarily focus on using advanced suspensions to overcome the tradeo design of ride comfort and handling performance for mining vehicles. It is generally realized by adjusting spring sti ness or damping parameters through active control methods. However, some drawbacks regarding control complexity and uncertain reliability are inevitable for these advanced suspensions. Herein, a novel passive hydraulically interconnected suspension(HIS) system is proposed to achieve an improved ride-handling compromise of mining vehicles. A lumped-mass vehicle model involved with a mechanical–hydraulic coupled system is developed by applying the free-body diagram method. The transfer matrix method is used to derive the impedance of the hydraulic system, and the impedance is integrated to form the equation of motions for a mechanical–hydraulic coupled system. The modal analysis method is employed to obtain the free vibration transmissibilities and force vibration responses under di erent road excitations. A series of frequency characteristic analyses are presented to evaluate the isolation vibration performance between the mining vehicles with the proposed HIS and the conventional suspension. The analysis results prove that the proposed HIS system can e ectively suppress the pitch motion of sprung mass to guarantee the handling performance, and favorably provide soft bounce sti ness to improve the ride comfort. The distribution of dynamic forces between the front and rear wheels is more reasonable, and the vibration decay rate of sprung mass is increased e ectively. This research proposes a new suspension design method that can achieve the enhanced cooperative control of bounce and pitch motion modes to improve the ride comfort and handling performance of mining vehicles as an e ective passive suspension system.  相似文献   

13.
Vision-based pose stabilization of nonholonomic mobile robots has received extensive attention.At present,most of the solutions of the problem do not take the robot dynamics into account in the controller design,so that these controllers are difficult to realize satisfactory control in practical application.Besides,many of the approaches suffer from the initial speed and torque jump which are not practical in the real world.Considering the kinematics and dynamics,a two-stage visual controller for solving the stabilization problem of a mobile robot is presented,applying the integration of adaptive control,sliding-mode control,and neural dynamics.In the first stage,an adaptive kinematic stabilization controller utilized to generate the command of velocity is developed based on Lyapunov theory.In the second stage,adopting the sliding-mode control approach,a dynamic controller with a variable speed function used to reduce the chattering is designed,which is utilized to generate the command of torque to make the actual velocity of the mobile robot asymptotically reach the desired velocity.Furthermore,to handle the speed and torque jump problems,the neural dynamics model is integrated into the above mentioned controllers.The stability of the proposed control system is analyzed by using Lyapunov theory.Finally,the simulation of the control law is implemented in perturbed case,and the results show that the control scheme can solve the stabilization problem effectively.The proposed control law can solve the speed and torque jump problems,overcome external disturbances,and provide a new solution for the vision-based stabilization of the mobile robot.  相似文献   

14.
The existing research of the integrated power and attitude control system(IPACS) in satellites mainly focuses on the IPACS concept,which aims at solving the coupled problem between the attitude control and power tracking.In the IPACS,the configuration design of IPACS is usually not considered,and the coupled problem between two flywheels during the attitude control and energy storage has not been resolved.In this paper,an integrated power and single axis attitude control system using two counter rotating magnetically suspended flywheels mounted to an air table is designed.The control method of power and attitude control using flywheel is investigated and the coupling problem between energy storage and attitude control is resolved.A computer simulation of an integrated power and single axis attitude control system with two flywheels is performed,which consists of two counter rotating magnetically suspended flywheels mounted to an air rotary table.Both DC bus and a single axis attitude are the regulation goals.An attitude & DC bus coordinator is put forward to separate DC bus regulation and attitude control problems.The simulation results of DC bus regulation and attitude control are presented respectively with a DC bus regulator and a simple PD attitude controller.The simulation results demonstrate that it is possible to integrate power and attitude control simultaneously for satellite using flywheels.The proposed research provides theory basis for design of the IPACS.  相似文献   

15.
<正>For a class of switched nonlinear systems, the BIBO stable domain is introduced in this paper. The robust H - infinity control problem for switched nonlinear systems with parameter uncertainty is investigated using the BIBO stable domain.Aiming at the effect of parameter uncertainties,a switching strategy and each state feedback sub - controller design are stated to guarantee the H - infinity performance of the whole switched system based on La Salle invariant principle.  相似文献   

16.
Rollover and jack-knifing of tractor semi-trailer are serious threats for vehicle safety,and accordingly active safety technologies have been widely used to reduce or prevent the occurrence of such accidents.However,currently tractor semi-trailer stability control is generally only a single hazardous condition (rollover or jack-knifing) control,it is difficult to ensure the vehicle comprehensive stability of various dangerous conditions.The main objective of this study is to introduce a multi-objective stability control algorithm which can improve the vehicle stability of a tractor semi-trailer by using differential braking.A vehicle controller is designed to minimize the likelihood of rollover and jack-knifing.First a linear vehicle model of tractor semi-trailer is constructed.Then an optimal yaw control for tractor using differential braking is applied to minimize the yaw rate and lateral acceleration deviation of tractor,as well as the hitch articulation angle of tractor semi-trailer,so as to improve the vehicle stability.Second a braking scheme and variable structure control with sliding mode control are introduced in order to achieve the best braking effect.Last Fishhook maneuver is introduced to the active safety simulation and the active control system effect verification.The simulation results show that multi-objective stability control algorithm of semi-trailer could improve the vehicle stability significantly during the transient maneuvers.The proposed multi-objective stability control algorithm is effective to prevent the vehicle rollover and jackknifing.  相似文献   

17.
A neural-network-based adaptive variable structure control methodology is proposed for the tracking problem of nonlinear discrete-time input-output systems. The unknown dynamics of the system are approximated via radial basis function neural networks. The control law is based on sliding modes and simple to implement. The discrete-time adaptive law for tuning the weight of neural networks is presented using the adaptive filtering algorithm with residue upper-bound compensation. The application of the proposed controller to engine idle speed control design is discussed. The results indicate the validation and effectiveness of this approach.  相似文献   

18.
ZERO PHASE ERROR REAL TIME CONTROL FOR FLIGHT SIMULATOR SERVO SYSTEM   总被引:1,自引:1,他引:1  
Flight simulator is an important device and a typical high performance position servo system used in the hardware-in-the-loop simulation of flight control system. Without using the future desired output, zero phase error controller makes the overall system's frequency response exhibit zero phase shift for all frequencies and a very small gain error at low frequency range can be achieved. A new algorithm to design the feedforward controller is presented, in order to reduce the phase error, the design of proposed feedforward controller uses a modified plant model, which is a closed loop transfer function, through which the system tracking precision performance can be improved greatly. Real-time control results show the effectiveness of the proposed approach in flight simulator servo system.  相似文献   

19.
Due to potential wide applications,the problem of utilizing an unmanned helicopter to track a ground target has become one of the most active research directions in related areas.However,in most cases,it is possible for a dynamic target to implement evasive actions with strong maneuverability,such as a sudden turn during high-speed movement,to flee from the tracker,which then brings much difficulty for the design of tracking control systems.Currently,most research on this field focuses on utilizing a ground mobile robot to track a high-speed target.Unfortunately,it is very difficult to extend those developed methods to airborne applications due to much more complex dynamices of UAV-target relative motion.This study investiages thoroughly for the problem of using an unmanned helicopter to track a ground target,with particular emphasis on the avoidance of tracking failure caused by the evasive maneuvers of dynamic targets.Specifically,a novel control scheme,which consists of an innovative target tracking controller and a classical flight controller,is proposed for the helicopter-target tracking problem.Wherein,the tracking controller,whose design is the focus of the paper,aims to utilize the motion information of the helicopter and the dynamic target to construct a suitable trajectory for the helicopter,so that when it flies along this trajectory,the relative pose between the helicopter and the dynamic target will be kept consant.When designing the target tracking controller,a novel coordinate transformation is firstly introduced to convert the tracking system into a more compact form convenient for control law design,the desired velocities for the helicopter is then proposed with consideration of the dynamic constraint.The stability of the closed-loop system is finally analyzed by Lyapunov techniques.Based on Matlab/Simulink environment,two groups of simulation are conducted for the helicopter-target tracking control system where the target moves along a linear path and takes a sudden turn during high-speed movement,respectively.As shown by the simulation results,both the distance error and the pointing error are bounded during the tracking process,and they are convergent to zero when the target moves straightly.Moreover,the tracking performance can be adjusted properly to avoid tracking failure due to evasive maneuvers of the target,so as to guarantee superior tracking performance for all kinds of dynamic targets.  相似文献   

20.
This paper deals with an open-loop characteristic of a magnetically levitated system including flux feedback. In order to design a controller to obtain a good disturbance rejection and to be insensitive to parameter variations, it might be useful to employ a flux feedback loop. The air gap flux which can be sensed by a proper sensor has linear relationship with respect to the change of the current and the air gap. This linear property decreases the inherent nonlinearity of the magnetic suspension system that is caused by the coupling between the electrical actuator and the mechanical plant. Simulation results achieved from a multi-degree-of-freedom numerical model show that the flux feedback loop makes an improvement of the performance of the magnetic suspension system against the load variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号