首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
针对传统K-均值聚类算法初始聚类中心和聚类数目确定困难的问题,提出了基于密度统计法和最大距离乘积法的聚类中心选取方法.该方法通过对样本空间网格化,选出局部包含样本最多的网格,并对这些局部最优网格内的样本点进行ε邻域密度统计,然后取邻域密度最大且相距最远的两个样本点为聚类中心进行一次聚类.计算每个样本点到各个聚类中心的距离的积,取距离积最大的样本点为下一个聚类中心,并以此循环聚类.仿真实验表明,该方法在聚类精度上具有明显优势.  相似文献   

2.
基于样本空间分布密度的初始聚类中心优化K-均值算法*   总被引:1,自引:1,他引:1  
针对传统K-均值聚类算法对初始聚类中心敏感、现有初始聚类中心优化算法缺乏客观性,提出一种基于样本空间分布密度的初始聚类中心优化K-均值算法。该算法利用数据集样本的空间分布信息定义数据对象的密度,并根据整个数据集的空间信息定义了数据对象的邻域;在此基础上选择位于数据集样本密集区且相距较远的数据对象作为初始聚类中心,实现K-均值聚类。UCI机器学习数据库数据集以及随机生成的带有噪声点的人工模拟数据集的实验测试证明,本算法不仅具有很好的聚类效果,而且运行时间短,对噪声数据有很强的抗干扰性能。基于样本空间分布密度的初始聚类中心优化K-均值算法优于传统K-均值聚类算法和已有的相关K-均值初始中心优化算法。  相似文献   

3.
传统的K-means算法随机选取初始聚类中心,聚类结果不稳定,容易陷入局部最优解。针对聚类中心的敏感性,提出一种优化初始聚类中心的K-means算法。此算法利用数据集样本的分布特征计算样本点的密度并进行分类,在高密度区域中选择K个密度最大且相互距离超过某特定阈值的点作为初始聚类中心,并对低密度区域的噪声点单独处理。实验证明,优化后的算法能取得更好的聚类效果,且稳定性增强。  相似文献   

4.
基于初始聚类中心优化的K-均值算法   总被引:2,自引:0,他引:2       下载免费PDF全文
针对传统的K-均值算法对初始聚类中心的选取和孤立点敏感的问题,本文提出了一种基于点密度的初始聚类中心选取方法。利用该方法选出初始聚类中心,再应用K-均值算法进行聚类,同时对孤立点进行特殊处理。实验表明,该方法能够产生高质量的聚类结果。  相似文献   

5.
K-means算法的初始聚类中心的优化   总被引:7,自引:3,他引:7       下载免费PDF全文
传统的K-means算法对初始聚类中心敏感,聚类结果随不同的初始输入而波动,针对K-means算法存在的问题,提出了基于密度的改进的K-means算法,该算法采取聚类对象分布密度方法来确定初始聚类中心,选择相互距离最远的K个处于高密度区域的点作为初始聚类中心,理论分析与实验结果表明,改进的算法能取得更好的聚类结果。  相似文献   

6.
一种有效k-均值聚类中心的选取方法   总被引:2,自引:0,他引:2  
基于k-均值算法的思想和关键技术,本文对于k-均值算法中的初始点的选取进行了深入的研究,提出了一种高性能初始点的选取算法并用实际数据进行测试,通过与常规的随机选取方法的比较,该算法具有更好的性能和健壮性。  相似文献   

7.
K-means算法的聚类效果与初始聚类中心的选择以及数据中的孤立点有很大关联,具有很强的不确定性.针对这个缺点,提出了一种优化初始聚类中心选择的K-means算法.该算法考虑数据集的分布情况,将样本点分为孤立点、低密度点和核心点,之后剔除孤立点与低密度点,在核心点中选取初始聚类中心,孤立点不参与聚类过程中各类样本均值的...  相似文献   

8.
优化初始聚类中心的K-means聚类算法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对传统K-means算法对初始中心十分敏感,聚类结果不稳定问题,提出了一种改进K-means聚类算法。该算法首先计算样本间的距离,根据样本距离找出距离最近的两点形成集合,根据点与集合的计算公式找出其他所有离集合最近的点,直到集合内数据数目大于或等于[α]([α]为样本集数据点数目与聚类的簇类数目的比值),再把该集合从样本集中删除,重复以上步骤得到K(K为簇类数目)个集合,计算每个集合的均值作为初始中心,并根据K-means算法得到最终的聚类结果。在Wine、Hayes-Roth、Iris、Tae、Heart-stalog、Ionosphere、Haberman数据集中,改进算法比传统K-means、K-means++算法的聚类结果更稳定;在Wine、Iris、Tae数据集中,比最小方差优化初始聚类中心的K-means算法聚类准确率更高,且在7组数据集中改进算法得到的轮廓系数和F1值最大。对于密度差异较大数据集,聚类结果比传统K-means、K-means++算法更稳定,更准确,且比最小方差优化初始聚类中心的K-means算法更高效。  相似文献   

9.
针对K-均值聚类算法对初始聚类中心存在依赖性的缺陷,提出一种基于数据空间分布选取初始聚类中心的改进算法.该算法首先定义样本距离、样本平均差异度和样本集总体平均差异度;然后将每个样本按平均差异度排序,选择平均差异度较大且与已选聚类中心的差异度大于样本集总体平均差异度的样本作为初始聚类中心.实验表明,改进后的算法不仅提高了聚类结果的稳定性和正确率,而且迭代次数明显减少,收敛速度快.  相似文献   

10.
针对传统的K-均值算法聚类时所面临的维数灾难、初始聚类中心点难以确定的缺点,提出一种改进的K-均值算法,其核心思想是通过降维、基于密度及散布的初始中心点搜索等方法改进K-均值算法。实验结果证明改进后的算法无论在聚类精度还是在稳定性方面,都明显优于标准的K-均值算法。  相似文献   

11.
一种基于局部密度的核K-means算法*   总被引:1,自引:0,他引:1  
针对核K-means算法初始聚类中心点难以确定等问题,提出了一种基于局部密度的核K-means算法,该方法利用每个样本的局部相对密度来选择具有高密度且低相似性的样本来生成初始类中心点。实验结果表明,该算法能够很好地排除类边缘点和噪声点的影响,并且能够适应数据集中各个实际类别密度分布不平衡的情况,最终可以生成质量较高且波动性较小的聚类。  相似文献   

12.
一种优化初始中心的K-means粗糙聚类算法   总被引:3,自引:0,他引:3       下载免费PDF全文
针对K-means算法的不足,提出了一种优化初始中心的聚类算法。首先,采用密度敏感的相似性度量来计算对象的密度,基于对象之间的距离和对象的邻域,选择相互距离尽可能远的数据点作为初始聚类中心。然后,采用基于粗糙集的K-means聚类算法处理边界对象,同时利用均衡化函数自动生成聚类数目。实验表明,算法具有较好的聚类效果和综合性能。  相似文献   

13.
针对传统[K]均值聚类算法中存在的聚类结果依赖于初始聚类中心及易陷入局部最优等问题,提出一种基于样本密度的全局优化[K]均值聚类算法(KMS-GOSD)。在迭代过程中,KMS-GOSD算法首先通过高斯模型得到所有聚类中心的预估计密度,然后将实际密度低于预估计密度最大的聚类中心进行偏移操作。通过优化聚类中心位置,KMS-GOSD算法不仅能提升全局探索能力,而且可以克服对聚类初始中心点的依赖性。采用标准的UCI数据集进行实验对比,发现改进后的算法相比传统的算法有较高的准确率和稳定性。  相似文献   

14.
针对K-means算法中的初始聚类中心是随机选择这一缺点进行改进,利用提出的新算法选出初始聚类中心,并进行聚类。这种算法比随机选择初始聚类中心的算法性能有所提高,具有更高的准确性。  相似文献   

15.
传统K-均值算法对初始聚类中心敏感大,易陷入局部最优值.将遗传算法与K均值算法结合起来进行探讨并提出一种改进的基于K-均值聚类算法的遗传算法,改进后的算法是基于可变长度的聚类中心的实际数目来实现的.同时分别设计出新的交叉算子和变异算子,并且使用的聚类有效性指标DB-Index作为目标函数,该算法很好地解决了聚类中心优化问题,与之前的两种算法相比,改进后的算法改善了聚类的质量,提高了全局的收敛速度.  相似文献   

16.
一种改进的K—means聚类算法   总被引:1,自引:0,他引:1  
K—means算法是最常用的一种基于划分的聚类算法,但该算法需要事先指定K值、随机选择初始聚类中心等的缺陷,从而影响了K—means聚类结果的稳定性。针对K—means算法中的初始聚类中心是随机选择这一缺点进行改进,利用提出的新算法确定初始聚类中心,然后进行聚类,得出最终的聚类结果。实验证明,该改进算法比随机选择初始聚类中心的算法性能得到了提高,并且具有更高的准确性及稳定性。  相似文献   

17.
K-means初始聚类中心的选择算法   总被引:1,自引:0,他引:1  
郑丹  王潜平 《计算机应用》2012,32(8):2186-2192
K-means算法随机选取初始聚类中心,容易造成聚类准确率低且聚类结果不稳定。针对这一问题,提出一种初始聚类中心的选择算法。通过k-dist的差值(DK)图分析,确定数据点在k-dist图上的位置,选择主要密度水平曲线上k-dist值最小的点作为初始聚类中心。实验证明,改进算法选择的初始聚类中心唯一,聚类结果稳定,聚类准确率高,迭代次数少。  相似文献   

18.
一种K-means聚类算法的改进与应用   总被引:1,自引:0,他引:1  
K-means算法是基于距离作为相似性度量的聚类算法,传统的K-means算法存在难以确定中心值个数、受噪声及孤立点影响较大的缺点。对此,利用类间相异度与类内相异度改进初始值K,以尽量减少人工干预;同时计算数据库中每一点与剩余点的距离和距离均和,将两者的大小比较作为识别孤立点和噪声点的依据,从而删除孤立点,减少对数据聚类划分的影响。最后将改进后的Kmeans算法应用于入侵检测系统并进行仿真实验,结果表明,基于改进的K-means算法的入侵检测系统一定程度上降低了误报率及误检率,提高了检测的准确率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号