首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ferroelectric ceramics, SrBi2Nb2O9 (SBN), Sr0.8Cu0.2Bi2Nb2O9 (SCBN) and Sr0.8K0.1Na0.1Bi2Nb2O9 (SKNBN) were prepared by a solid state reaction process. X-ray diffraction analysis shows that the alkali and Cu almost diffuse into the SBN lattice to form a solid solution during sintering and some slight secondary phases was detected. The effect of alkali and Cu on dielectric properties of the SBN ceramics was discussed. The dielectric loss factor of (K,Na) doped SBN ceramics degraded considerably to 0.01 and their frequency and temperature stabilities were enhanced. The dielectric constant was enhanced by approximately 60% and the Curie temperature (Tc) was also improved for Cu doped SrBi2Nb2O9 ceramics.  相似文献   

2.
Nonstoichiometric SrBi2Ta2O9 (SBT) and SrBi2Nb2O9 (SBN) ceramics were prepared by a solid state reaction method. X-ray diffraction analysis showed that single-phase of Bi-layered perovskite was obtained. With different Sr/Bi content ratios of SBT and SBN, Curie temperature (TC), electromechanical factor (Kp) and mechanical quality factor (Qm) were measured. TC of SBN (SBT) rose from 414C (314C) to 494C (426C) when Sr/Bi content ratio was increased from 0.55/2.3 to 1.2/1.8. In the most Sr-deficient/Bi-excess ratio of 0.55/2.3, the maximum values of Qm were obtained approximately 1013 and 3325 for SBT and SBN, respectively.  相似文献   

3.
Equilibrium dc conductivity and thermopower measurements at 650–800°C on undoped and 1% acceptor-doped SrBi2Nb2O9, SBN, indicate that the n-type conductivity is similar to that of a simple transition metal oxide that contains 1–2% donor excess. The donor content is attributed to the presence of Bi+3 on Sr+2 sites in the perovskite-like layers of the structure. These centers arise from cation place exchange between these ions in the alternating layers of the crystal. This exchange is apparently not completely self-compensating, and there is local charge compensation in each layer. While the equilibrium conductivity of SrBi2Ta2O9, SBT, is dominated by ionic conduction in the Bi layers, in SBN conduction by electrons in the perovskite-like layers prevails. The difference in behavior is attributed to the expected smaller band gap of the niobate. The electron mobility in SBN is extremely small, of the order of 10–5 cm2/v · sec at 750°C, and is highly activated with an activation energy of about 1.6 eV. The resulting low mobility at ambient temperatures is proposed as the basis for the observed resistance to ferroelectric fatigue. Reports of metallic Bi on the surface of SBT and SBN by XPS analysis are shown to result from the highly reducing atmosphere of the XPS apparatus.  相似文献   

4.
Ionic doping effects of various ions in Bi-layered ferroelectric SrBi2Nb2O9 (SBN) ceramics were studied. Un-doped and doped SBN ceramics with Ba2+, Pb2+, Ca2+, Bi3+, La3+, Ti4+, Mo6+, and W6+ ions were made with solid state reactions. Temperature dependent dielectric constants were measured. Ferroelectric transition temperature (TC) decreased with Ba2+ and Pb2+ ions but increased with Ca2+ ion which substitutes the 12-coordinated Sr2+ site. TC increased with Ti4+, Mo6+, and W6+ ions which substitute the 6-coordinated Nb5+ sites. With trivalent Bi3+ and La3+ ions, TC increased with Bi3+ ion but much decreased with La3+ ion. These results showed that the ion size plays an important role in ferroelectricity of SBN ceramics.  相似文献   

5.
Abstract

The growth, microstructure and micro-Raman properties of SrBi2Tao0.8Nb1.2O9 (SBTN) thin films deposited on Si(100) substrates using pulsed laser deposition (PLD) technique were studied at various substrate temperatures. Films were characterized using X-ray diffraction(XRD), atomic force microscopy(AFM), energy dispersive X-ray analysis (EDAX) and micro-Raman studies. AFM studies indicated that the average grain size of the films increased between 0.08 μm to 0.1 μm with the increasing growth temperatures. Micro-Raman studies of SBTN films revealed the fact that shifting of Raman modes corresponds to the BO6 (where B' Ta/Nb) octahedral symmetry, to higher frequencies, is in accordance with the different masses of the B site atoms and the force constants involved due to Nb doping at Ta sites.  相似文献   

6.
SrBi 2 Nb 2 O 9 (SBN) thin films on a Pt/Ti/SiO 2 /Si substrate were prepared by aqueous chemical solution deposition. The precursor solution was synthesized by means of an 'aqueous solution-gel method', starting with stable, inexpensive and easily available inorganic salts which are dissolved in an aqueous solution of chelating or coordinating ligands (acetates and citrates). Afterwards the synthesized precursor was spin-coated. However, problems arose as a consequence of insufficient 'wetting' of the substrate surface by the aqueous solution (poor film-substrate adhesion). Instead of improving surface adhesion by the addition of a surface-wetting reagent, a new strategy was developed: prior to spin-coating the platinum surface characteristics were modified using a UV/ozone technique. In this way the precursor solution was not chemically changed. Wetting/wettability was verified by means of contact angle measurements. A uniform, three-layer thin film with a total thickness of about 200 nm was obtained after thermal treatment, as could be verified using SEM and XRD.  相似文献   

7.
Abstract

Ferroelectric SrBi2(Ta, Nb)2O9 (SBTN) thin films were prepared by rf magnetron sputtering utilizing a multi-chamber type production tool (ULVAC CERAUS ZX1000). Accurate and dynamic compositional control results in excellent ferroelectric performances such as large 2Pr up to 15μC/cm2, fatigue free at least 109 cycles as well as good uniformity and process repeatability. These results indicate that the SBTN sputtering process is promising for ferroelectric memory production.  相似文献   

8.
Ferroelectric thin films of SrBi 2 Ta 2 O 9 (SBT) and (Sr 0.8 Ca 0.2 )Bi 2 Ta 2 O 9 (SCBT) were grown on platinized silicon substrates by using pulsed laser deposition technique. The effect of annealing temperature on the structural and electrical properties of the films was studied. Films were grown at 200 mTorr oxygen pressure with a constant substrate temperature at 500°C and annealed at different temperatures ranging from 700-800 °C in an oxygen ambient. X-ray diffraction data showed that as-grown films were crystalline nature. Atomic force micrographs showed that the grain size and surface roughness increased with increase in annealing temperature. The SBT films annealed at 800 °C showed ferroelectric properties with remanent polarization of 9.1 w C/cm 2 and coercive field of nearly 72 kV/cm. Whereas the SCBT films showed maximum remanent polarization of 7.3 w C/cm 2 with higher coercive field of 86 kV/cm. The higher coercive field in case of SCBT is attributed to the higher electronegativity of partially substituted Ca at Sr site. The dielectric constant increased with increase in annealing temperature and was attributed to the higher grain size.  相似文献   

9.
Abstract

Bismuth-layer-structured ferroelectric thin films, SrBi2Ta2O9 and Bi4Ti3O12, have been prepared by laser ablation method on both Pt sheets and Si wafers at low temperatures of 400 ~ 500°C. These thin films have been characterized by XRD, XPS, AFM, C-V, D-E hysteresis and J-V measurement. SrBi2Ta2O9 thin films have a good (105) preferential orientation, and Bi4Ti3O12 thin films have (117) and c-axis orientation on these substrates. Ferroelectric film-SiO2-Si structures show good C-V hysteresis curve owing to Si surface potential controlled by the D-E hysteresis. D-E hysteresis is obtained in Bi4Ti3O12 thin film prepared on Pt sheet, and the remnant polarization and the coercive force are 7.5 μC/cm2 and 72 kV/cm, respectively.  相似文献   

10.
Vanadium-substituted strontium bismuth tantalate, Sr0.8Bi2.2Ta2− xVxO9 (SBTVx), and strontium bismuth niobate, SrBi2Nb2− xVxO9 (SBNVx), ceramics were synthesized by a low-temperature processing, and their dielectric, ferroelectric and piezoelectric properties were characterized. With the partial substitution of tantalum or niobium by vanadium cations, the single phase of the ABi2M2O9-type structure was preserved and the sintering temperature was significantly decreased. For the SBNV ceramics, the T c of 437C for x = 0.0, the vanadium content hardly changed. On the other hand, the T c of the SBTV ceramics increased from 408C for the non-substituted SBTV to 414C for x = 0.05 and then with the increasing vanadium content, the T c decreased to 379C for x = 0.20. The remanent polarizations, P r, of SBTV and SBNV at room temperature were 4.9 and 5.4 μC/cm2, respectively. All the obtained independent electromechanical coupling factors of the SBTV0.05 ceramics were as follows: k p = 0.119, k 31 = 0.073, k 33 = 0.165, k 15 = 0.051 and k t = 0.134, and the SBNV0.05 ceramics were as follows: k p = 0.074, k 31 = 0.045, k 33 = 0.175, k 15 = 0.106 and k t = 0.140. These coupling factors were higher than those of the non-substituted materials. From these results, the vanadium-substituted SBT and SBN-based materials can be expected to be lead-free piezoelectric resonator materials that can be prepared at low sintering temperatures.  相似文献   

11.
Abstract

SrBi2Ta2O9 (SBT) is an attractive material for nonvolatile ferroelectric memory applications. In this paper we report on the deposition of highly epitaxial and smooth SrBi2Ta2O9 films on (110) SrTiO3substrates. The films were grown by pulsed laser deposition at temperatures ranging from 600 to 800°C and at various laser fluences from a Bi-excess SBT target. The background oxygen pressure was maintained at 28 Pa during the film deposition. Structural characterization of the films was performed by x-ray diffraction. Atomic force microscopy was used to investigate morphology and growth of the films. The films grew with preferred (115) or (116) orientation. The roughness was of the order of unit cell height. The films display a growth pattern resulting in corrugated film morphology.  相似文献   

12.
Crystallizable zinc borate glasses modified with different contents of La2O3 or Nd2O3 were investigated as a potential low loss dielectric with respect to their crystallization behavior and microwave dielectric characteristics. The glasses were admixed with Al2O3 filler and fired at 850°C for 30 min in air to prepare low temperature dielectrics. Crystallization behavior and microwave dielectric properties of the resulting samples strongly depended on the relative content of La2O3 or Nd2O3 in the glass. As a promising result, the composition of 0.15ZnO-0.25Nd2O3-0.6B2O3 exhibited k?~?6.5 and Q?~?1194 at the resonant frequency of 18.9 GHz. Near zero temperature coefficient of frequency (TCF) was obtained by additional modification of the composition with ~10 wt.% of TiO2 filler. Crystallization kinetics of the samples was studied based on the differential thermal analysis (DTA) curves obtained with different heating rates. Correlation of the observed dielectric properties to the crystallization behavior is the main subject of this work.  相似文献   

13.
The sintering behavior, microstructure and microwave dielectric properties of Mg4(Nb2?x Sb x )O9 (0?≤?x?≤?2) solid solutions were investigated systematically by X-ray diffraction(XRD), scanning electron microscopy(SEM) and a network analyzer. The solid solutions of Mg4(Nb2?x Sb x )O9 was formed with x value being no more than 1.6. The dielectric constant (?) of the sintered ceramics decreased from 13.06 to 6.28 with Sb content x from 0 to 1.6. With a substitution of Sb5+ for Nb5+ (0.04?≤?x?≤?0.08), the sintering temperature of Mg4Nb2O9 ceramics was decreased from 1400 to 1300 °C without degradation of the Qf values. The optimum microwave dielectric properties of ??~?12.26, Qf?~?168,450 GHz, and τ f?~??56.4 ppm/°C were obtained in the composition of Mg4(Nb1.6Sb0.4)O9 sintered at 1300 °C.  相似文献   

14.
The effects of V2O5 and Li2CO3 on the sinterability and microwave dielectric properties of Mg4Nb2O9 (MN) ceramics were investigated. With addition of 1.5wt% V2O5, the dielectric constant (?) and Q·? value of MN ceramics sintered at 1,000 °C are comparable to those of pure MN sintered at 1,400 °C. The good results are because of the enhancement of the density by liquid sintering at the lower temperatures. With the mixtures of V2O5 and Li2CO3, the sintering temperature of MN was further reduced to 925 °C at the expense of the quality factor (Q·?) value. Typically, ? of 13.7 and Q·? value of 78,000 GHz were obtained for the specimens with mixtures of 1.5wt% V2O5 and 1.5wt% Li2CO3 and sintered at 925 °C for 5 h.  相似文献   

15.
ABSTRACT

CaBi1.5La0.5Nb2O9 ceramics were prepared by a conventional solid-state reaction method. Their structure and dielectric properties were investigated. X-ray diffraction analysis indicated that single phase layered perovskites were obtained. Dielectric studies demonstrated that CaBi1.5La0.5Nb2O9 is characteristic of relaxor ferroelectrics. The dielectric relaxation of CaBi1.5La0.5Nb2O9 was modeled using the Vögel-Fulcher relationship, and the dielectric relaxation in CaBi1.5La0.5Nb2O9 is found to be analogous to a spin glass with thermally activated polarization fluctuations above a static freezing temperature.  相似文献   

16.
In this study, in order to develop the composition ceramics for multilayer piezoelectric actuator, PNN substituted PMN-PZT ceramics were fabricated using Li2CO3 and Na2CO3 as sintering aids, and their piezoelectric and dielectric characteristics were investigated. With the increase of the amount of PNN substitution, dielectric constant (εr), electromechanical coupling factor (k p), and piezoelectric constant (d 33) of specimens showed the maximum value at each sintering temperature, and crystal structure changed from tetragonal to rhombohedral. At the sintering temperature of 950C, the density, εr, k p, d 33, Qm and Tc of 12 mol% PNN substituted PMN-PNN-PZT composition ceramics showed the optimal values of 7.79 g/cm3, 1160, 0.599, 419pC/N, 894 and 332C, respectively, for low loss multilayer piezoelectric actuator application.  相似文献   

17.
Abstract

In this study, integration of an hydrogen barrier into a FeRAM process flow is investigated. It is reported in the literature that ferroelectric properties can be maintained after hydrogen annealing by using IrOx as a top electrode [16][17][18]. Advantage of materials like IrOx is less catalytic activity compared to Pt. However, we found that IrOx is not a promising candidate for top electrode barrier. (Pt)/IrOx/SBT/Pt capacitors are prone to shorting or exhibit high leakage. IrOx films are very easily reduced by reducing ambient which will result in peeling off. Also, IrOx films tend to oxidize Ti or TiN layers immediately. Therefore, other barrier materials or layer sequences like Ir/IrOx have to be considered.

For protection of the entire capacitor an Encapsulation Barrier Layer (EBL) is required. In this study, LPCVD SiN is used. LPCVD SiN is a standard material in CMOS technology. Production tools are available and it is well known as hydrogen barrier. By modifying the deposition process and using a novel process sequence, no visual damage of the capacitors after SiN-deposition and FGA is seen. Also, no degradation of electrical properties after capacitor formation as well as after SiN-deposition and FGA is observed. However, after metal 1 and metal 2 processing, 2Pr values at 1.8V are reduced from 12μC/cm2to 2μC/cm2. Polarization at 5.0V is not affected.  相似文献   

18.
In this study, to develop the optimal composition of ceramics for low loss piezoelectric actuator and ultrasonic motor applications, (K0.5Na0.5)(Nb0.97Sb0.03)O3?+?0.009 K5.4Cu1.3Ta10O29?+?0.1wt%Li2CO3?+?xwt%Bi2O3(x?=?0?~?0.9) lead-free piezoelectric ceramics with a fixed quantity of 0.009 K5.4Cu1.3Ta10O29 (abbreviated as KCT) were manufactured using the conventional solid-state solution processes. The effects of Bi2O3 addition on the dielectric and piezoelectric properties were then investigated. From the X-ray diffraction analysis result the specimens demonstrated orthorhombic symmetry when Bi2O3 was less 0.6?wt%, a pseudo-cubic phase appeared when Bi2O3 was 0.9?wt%. SEM images indicate that a small amount of Bi2O3 addition affect the microstructure. The piezoelectric properties of (K0.5Na0.5)(Nb0.97Sb0.03)O3 ceramics were greatly improved by a certain amount of Bi2O3 addition. Excellent properties of density?=?4.54?g/cm3, relative densities?=?98.5?%, k p?=?0.468, Q m?=?1,715 and d 33?=?183 pC/N were obtained with a composition of 0.3?wt% Bi2O3  相似文献   

19.
Microwave dielectric properties of the [(Pb0.5Ca0.5)1?x La2x/3](Fe0.5Nb0.5)O3 and [(Pb0.5Ca0.5)1?x La x ](Fe0.5Nb0.5)O3 ceramics were investigated as a function of La3+ content $ {\left( {0.0 \leqslant \times \leqslant 0.2} \right)} $ . A single perovskite phase was detected in [(Pb0.5Ca0.5)1?x La2x/3](Fe0.5Nb0.5)O3, while Pb3Nb4O13 were detected as a secondary phase in [(Pb0.5Ca0.5)1?x La x ](Fe0.5Nb0.5)O3 beyond x?=?0.05 due to the excess of unbalanced charge. The amount of Pb3Nb4O13 was proportional to the unbalanced charge. Qf value of [(Pb0.5Ca0.5)1?x La2x/3](Fe0.5Nb0.5)O3 decreased remarkably with La3+ substitution due to the increase of oxygen vacancy. For [(Pb0.5Ca0.5)1?x La x ](Fe0.5Nb0.5)O3 ceramics, dielectric constant and Qf value increased with La3+ content up to x?=?0.03 due to an increase of density and grain size. Temperature coefficient of resonant frequency (TCF) was depended on B-site bond valence in single perovskite phase.  相似文献   

20.
Xue  Guoliang  Zhou  Xuefan  Zhang  Dou 《Journal of Electroceramics》2022,48(3):111-116
Journal of Electroceramics - NaNbO3-based lead-free ceramics show great potential in energy storage and piezoelectric applications due to the antiferroelectric and ferroelectric features. However,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号