首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
一、纳米塑料及蒙脱土纳米塑料是无机纳米粒子以纳米级尺寸(一般为1-100nm)均匀分散在塑料母体树脂中形成的复合材料,也被称为聚合物基纳米复合材料。常用的无机纳米粒子包括硅酸盐、碳酸钙、Si02、Ti02、Sic、Al203、云母、  相似文献   

2.
热塑性树脂基纳米复合材料研究与应用   总被引:2,自引:2,他引:0  
综述了热塑性树脂基纳米复合材料的研究与应用现状,主要介绍了以无机纳米颗粒、无机纳米晶须和纳米纤维素为填料的热塑性树脂基复合材料,并提出该领域研究中存在的问题,以期开发出性能满足要求的新型纳米复合材料。  相似文献   

3.
《塑料加工》2005,40(3):42-42
最近世界PA(聚酰胺)系纳米复合材料开发和工业化取得了一些进展,有以一般PA6为基础树脂的复合材料,也有以PA12和特殊尼龙MXD6为基础树脂的纳米复合材料。日本北川工业公司、昭和电工公司和信州大学于2002年采用纳米粒子直接混合法制备了PA/碳纳米纤维纳米复合材料,碳纳米纤维含量20%,用于精密注射成型制品。  相似文献   

4.
制备了新型N-苯基马来酰亚胺(N-PMI)改性酚醛树脂(PF)/TiO2(PPMF/TiO2)纳米复合材料,研究了纳米TiO2对加成固化型PPMF树脂固化及固化产物性能的影响,采用傅里叶红外光谱仪、热失重分析仪、扫描电子显微镜等对所制备复合材料的结构及性能进行了研究。结果表明,纳米TiO2表面的羟基可通过化学键缩合到PF上,且能参与并催化树脂固化反应;当纳米TiO2用量为5%(质量分数,下同)时,纳米颗粒能均匀分散在树脂基体中,复合材料的力学性能达到最佳;过氧化二异丙苯(DCP)可促进PPMF树脂的固化且在DCP用量为2%、150℃、固化2h,PPMF/TiO2能达到较高的凝胶含量;PPMF/TiO2复合材料的耐热性能明显优于PPMF树脂。  相似文献   

5.
将无机纳米氧化铜(CuO)粒子加入氰酸酯树脂(CE),以有机锡(DBTDL)实现自由基引发,定量加入环氧树脂(E–54)制得CE/CuO系列复合材料.测试了复合材料的力学性能、导热性能和耐酸碱腐蚀性能,讨论了复合材料性能得以改变的原因.结果表明,无机纳米CuO粒子的引入,有利于CE基体树脂的聚合,无机纳米CuO粒子含量...  相似文献   

6.
CE/EP/纳米SiC复合材料研究   总被引:6,自引:6,他引:0  
采用纳米SiC和环氧树脂(EP)对双酚A型氰酸酯树脂(CE)进行改性。研究了不同含量的纳米SiC对CE/EP/纳米SiC复合体系反应性及CE/EP/纳米SiC复合材料力学性能的影响,采用透射电子显微镜表征了材料的微观形貌,利用差示扫描量热法研究了固化树脂的热性能。结果表明,纳米SiC对CE/EP/纳米SiC复合体系具有明显的催化作用,并且能使复合材料的冲击强度提高123.62%,弯曲强度提高140.29%,有效发挥其增强增韧作用,还能很好地保持复合材料的耐热性能。  相似文献   

7.
王娴 《上海塑料》2012,(1):16-21
热固性树脂/纳米SiO2复合材料在添加纳米SiO2微粒后具有明显的成核效应。复合材料可显示低诱导期、高结晶速率和较小的半结晶时间等特点。同时纳米SiO2微粒的加入可提高储能模量(Es)、玻璃化转变温度(Tg),且二者的变化都与纳米SiO2微粒的质量分数成正比关系。这表明纳米SiO2微粒与热固性树脂之间存在较强的界面作用。对热固性树脂/纳米SiO2复合材料性能影响因素进行了分析。  相似文献   

8.
偶联剂对SiO2/CE复合材料动态力学性能的影响   总被引:2,自引:0,他引:2  
利用纳米SiO2对氰酸酯树脂(CE)进行改性,研究了纳米SiO2的含量对纳米SiO2/CE复合材料动态力学性能的影响.在此基础上,分别选用小分子偶联剂KH-560和大分子偶联剂SEA-171对纳米SiO2进行表面处理,进一步研究了界面结构对纳米SiO2/氰酸酯树脂复合材料动态力学性能的影响,初步探讨了其作用机理.结果表明,经SEA-171表面处理后的3.0wt%纳米SiO2/CE复合材料的储能模量比纯CE可提高近4倍,损耗模量可提高2.4倍,力学损耗因子可提高1.8倍.  相似文献   

9.
祝保林  王君龙 《应用化工》2008,37(4):387-391
利用纳米SiO2对氰酸酯树脂(CE)进行改性,研究了纳米SiO2的含量对纳米SiO2/CE复合材料动态力学性能的影响;在此基础上,分别选用小分子偶联剂KH-560和大分子偶联剂SEA-171对纳米SiO2进行表面处理,进一步研究了界面结构对纳米SiO2/氰酸酯树脂复合材料动态力学性能的影响。结果表明,经SEA-171表面处理后的3.0%纳米SiO2/CE复合材料的储能模量比纯CE可提高近4倍,损耗模量可提高2.4倍,力学损耗因子可提高1.8倍。初步探讨了其作用机理。  相似文献   

10.
采用反应挤出工艺双原位法制备硫化镉/尼龙6(CdS/PA6)纳米复合材料。CdS/PA6纳米复合材料由硫镉矿型CdS和粘均分子量在(2.4~5.6)×10~4 g/mol的尼龙6基体组成。低CdS含量时,纳米CdS晶体(6.2~9.7 nm)聚集形成15~50 nm的松散的团聚体,均匀的分散于尼龙6基体。较高CdS含量时,CdS/PA6纳米复合材料总体分散性较好,但存在一些由纳米CdS晶体融合成的紧密的团聚体(约100 nm)。将含14.1%(质量分数)CdS的CdS/PA6纳米复合材料用作色母料与商品尼龙6树脂熔融共混,可以生产出颜色均匀、色差极低的黄色制品。  相似文献   

11.
Commercial unsaturated polyester (UPE) resins typically contain a high amount of volatile toxic styrene. A non‐volatile acrylated epoxidized soybean oil (AESO) was found to be an excellent replacement of styrene in a commercially available UPE resin [designated as Styrene‐(PG‐IPA‐MA)] that is derived from propylene glycol (PG), isophthalic acid (IPA), and maleic anhydride (MA) in terms of the mechanical properties of the resulting kenaf fiber‐reinforced composites. The AESO‐(PG‐IPA‐MA) resins had low viscosity and long pot life below 70°C for a typical fiber‐reinforced composite application. AESO and PG‐IPA‐MA were not able to form a strong polymer matrix individually for fiber‐reinforced composites. However, a combination of AESO and PG‐IPA‐MA saw strong synergistic effects between them. The flexural, tensile, and water absorption properties of kenaf fiber‐reinforced composites made from AESO‐(PG‐IPA‐MA) resins were comparable with or even superior to those from the Styrene‐(PG‐IPA‐MA) resin. The AESO/(PG‐IPA‐MA) weight ratio was investigated for maximizing the mechanical properties of the kenaf fiber‐reinforced composites. The curing mechanism of the AESO‐(PG‐IPA‐MA) resins is discussed in detail. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43052.  相似文献   

12.
Two highly functionalized resins were synthesized by the phase transfer reaction of indene with propargyl bromide or allyl chloride in the presence of strong base. The resins consisted of a mixture of tri- and tetrafunctional indenes with 60–80% of the product being tetrafunctional. The allylated (AL) and propargylated (PL) indene resins were thermally cured without added catalysts. Both resins exhibited a broad, highly exothermic cure with a peak energy at 320°C for AL resin and 282°C for PL resin. Thermal degradation of cured AL resin was found to begin at approximately 400°C with a carbon yield of 20% of its initial weight at 1000°C. Carbon yields for cured PL resin were excellent, with 68% retention of weight at 1000°C. Unidirectional, carbon fiber composites were fabricated from the substituted indene resins. AL–carbon fiber composites gave modulus values of 126 GPa and strength values of 967 MPa, while PL–carbon fiber composites gave modulus values of 116 GPa and strength values of 935 MPa in three-point bending tests. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 68: 475–482, 1998  相似文献   

13.
烧蚀复合材料用酚醛树脂的结构表征及性能   总被引:1,自引:0,他引:1  
采用FTIR、GPC、DSC及TG等方法对4种烧蚀复合材料用酚醛树脂(钨酚醛树脂(WPR)、硼酚醛树脂(BPR)、高残炭酚醛树脂(HCYPR)、S-157酚醛树脂)固化前的结构、分子质量及其分布、固化历程、热失重特性进行了表征和对比,以便为烧蚀复合材料基体的筛选提供理论依据。研究结果发现,S-157PR的分子质量最小,分布最窄,浸润性最好;4种酚醛树脂的固化峰温依次为HCYPR>BPR>WPR>S-157PR;800℃残炭率依次为BPR>HCYPR>WPR>S-157PR。  相似文献   

14.
Phenolic/silica ceramers were prepared by the sol‐gel method. Carbon fiber reinforced phenolic/silica ceramer composites with high thermal resistance were fabricated. Tetraethyl orthosilicate (TEOS) was used as a monomer for sol‐gel system. Different ratios of the sol‐gel solutoins and phenolic resins were adopted and the resulting ceramers were used as matrices for carbon fiber reinforced composites. The mechanical and thermal properties of the fabricated composites were studied. The results show that the incorporation of inorganic ingredients into the phenolic resins will increase the thermal resistance of the fabricated composites but not affect the flexural strength of the carbon fiber reinforced phenolic/silica ceramer composites up to 60 wt%. The morphologies of the ceramer matrices were examined by SEM. SiO2 particles from at the gaps between fibers for higher inorganic contents.  相似文献   

15.
The durability of entirely bio‐based composites with respect to the exposure to elevated humidity was evaluated. Different combinations of bio‐based resins (Tribest, EpoBioX, Envirez) and cellulosic fibers (flax and regenerated cellulose fiber rovings and fabrics) were used to manufacture unidirectional and cross‐ply composite laminates. Water absorption experiments were performed at various humidity levels (41%, 70%, and 98%) to measure apparent diffusion coefficient and moisture content at saturation. Effect of chemical treatment (alkali and silane) of fibers as protection against moisture was also studied. However, fiber treatment did not show any significant improvement and in some cases the performance of the composites with treated fibers was lower than those with untreated reinforcement. The comparison of results for neat resins and composites showed that moisture uptake in the studied composites is primarily due to cellulosic reinforcement. Tensile properties of composites as received (RH = 24%) and conditioned (RH = 41%, 70%, and 98%) were measured in order to estimate the influence of humidity on behavior of these materials. Results were compared with data for glass fiber reinforced composite, as a reference material. Previous results from study of unreinforced polymers showed that resins were resistant to moisture uptake. Knowing that moisture sorption is primarily dominated by natural fibers, the results showed that some of the composites with bio‐based resins performed very well and have comparable properties with composites of synthetic epoxy, even at elevated humidity. POLYM. COMPOS., 36:1510–1519, 2015. © 2014 Society of Plastics Engineers  相似文献   

16.
Raw and dewaxed jute felt composites were prepared with resol and lignin modified phenol formaldehyde resin. Four different types of lignin modified resins were used by replacing phenol with lignin. The lignin modified resins were prepared from purified lignin obtained from paper industry waste black liquor. To investigate bonding between jute and resin, IR spectroscopy of jute felts and composites was carried out. The thermal stability of the composites was assessed by DSC and TGA. It was found that the lignin resin jute composite is thermally more stable than resol composite. XRD of jute felt and composite shows that the crystallinity of the jute fiber increases after composite preparation. The lignin resin composites were tested for water absorption and thickness swelling, and it was found that the results are comparable with those of resol jute composite. Composites prepared from lignin phenol formaldehyde resin with 50% phenol replacement has shown 75% tensile strength retention to that of pure resol jute composite.  相似文献   

17.
This work was concerned with evaluating the properties of injection molded composites comprising polyetherimide (PEI) and polyetheretherketone (PEEK) reinforced with various lower Tg melt processable phosphate glasses. Composites were produced utilizing a variety of glass and resin combinations in order to ascertain the effects of factors such as glass concentration and viscosity of the components on the mechanical properties of the composite blends. Changes in the rheological and interfacial properties of the blends obtained by varying the resins and phosphate glasses used during processing resulted in a variety of reinforcing morphologies consisting of glass beads, ribbons, and an interpenetrating network structure. The large variations in the glass phase morphologies obtained during injection molding led to composites that displayed a wide range of properties. Generally, it was found that the use of resin/glass combinations that minimized the viscosity difference between the components resulted in composites displaying the best overall mechanical properties. The stiffness of the composites was found to increase with glass concentration with loadings up to 45 vol% glass, leading to moduli 3‐4 times greater than those of the neat resins. While the addition of the phosphate glasses produced significant enhancements in the stiffness of the composite blends, the strength often fell to values 2‐3 times lower than those of the neat resins.  相似文献   

18.
Physical characterization of a liquid crystalline epoxy resin used as a matrix in the fabrication of carbon fiber composites is presented. Curing reactions, evaluated by means of calorimetry, indicate differences from those of conventional epoxies. The presence of fibers does not influence the reaction rate. Dynamic-mechanical characterization and fracture resistance of composites are discussed and compared to those of conventional resins. The outstanding toughness of the composites prepared with the liquid crystalline resin has been explained on the basis of a biphasic nature of the cured thermoset.  相似文献   

19.
ABSTRACT

Modified Urea-formaldehyde (UF) thermosetting resin, containing casein and p-amino phenol has been synthesized by polycondensation of urea, casein, and formaldehyde in the presence of varying proportion of p-aminophenol under alkaline condition. All the prepared resins were characterized by free-formaldehyde content, free-phenol content, viscosity measurements, and infrared spectroscopy (IR). Their curing kinetics were studied isothermally and also by Differential Scanning Calorimetry (DSC) on dynamic run. The resin samples were cured isothermally at 120°C using two different curing agents, that is p-toluene sulphonic acid (PTS) and hexamine, to understand the curing behavior of novel resin samples. The cured resins were characterized by IR and thermogravimetric analysis (TGA). The resin samples were employed for the fabrication of glass fiber and jute fiber reinforced composites respectively by maintaining 2:3 and 3:2 proportion of resin: reinforcement. The prepared composites were tested for their mechanical properties and resistance toward various chemicals.  相似文献   

20.
利用双螺杆挤出机共混挤出法分别制备了两种玻纤增强本体法(丙烯腈/丁二烯/苯乙烯)共聚物(ABS)复合材料和两种玻纤增强乳液法ABS复合材料,从熔体流动速率、力学性能、耐热性能等方面比较了它们的差别,并研究了(苯乙烯/马来酸酐)共聚物(SMAH)对玻纤增强ABS复合材料性能的影响.结果表明,少量的SMAH可明显提高玻纤增强ABS复合材料的拉伸强度、弯曲强度和冲击强度,玻纤增强本体法ABS复合材料有更好的力学性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号