首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a-Si:H/a-Si:H tandem solar cells have been fabricated using a plasma enhanced chemical vapor deposition. The solar cell has a structure of glass/textured-SnO2/p-a-SiC:H/i-a-Si:H/n-μc-Si:H/p-μc-Si:H/p-a-SiC:H/i-a-Si:H/n-μc-Si:H/gallium-doped zinc oxide/Ag. Higher efficiency in a-Si:H/a-Si:H tandem solar cells can be achieved by use of a good tunnel recombination junction (TRJ) and current matching. Accordingly, solar cells with a n-μc-Si:H/p-μc-Si:H TRJ are investigated. This paper studies the influence of the thickness of the top intrinsic amorphous silicon (i-a-Si:H) layer with regard to short circuit current density and current matching between the top and the bottom cells. Experimental results with lab-fabricated samples show that the optimal thickness of the i-a-Si:H layer in the top and bottom cells is 60 and 250 nm, respectively. An initial conversion efficiency of 10.29% is achieved for the optimized a-Si:H/a-Si:H tandem solar cell. Light-induced degradation of the solar cells is about 17%.  相似文献   

2.
This paper considers the intrinsic layer of hydrogenated amorphous silicon (a-Si:H) solar cells. The deposition temperatures (Td) and electrode distances (between cathode and anode, E/S) are important factors for a-Si:H solar cells. Thus, this study examines the effects of deposition temperatures and electrode distances in the intrinsic layer of a-Si:H solar cells with regard to enhanced the short-circuit current density (Jsc) and thereby conversion efficiency. It is shown that the Jsc of a-Si:H solar cells can be increased by proper choice of Td and E/S of the i-a-Si:H layers. The Jsc of the a-Si:H solar cells is largely dependent on light absorption of the i-a-Si:H layer. It is demonstrated that the absorption coefficient in an i-a-Si:H layer can be increased to provide higher Jsc under fixed thickness. Results show that the optimized parameters improve the Jsc of a-Si:H solar cells to 16.52 mA/cm2, yielding an initial conversion efficiency of 10.86%.  相似文献   

3.
Hydrogenated amorphous silicon film (a-Si:H) as top cell is introduced to dye-sensitized titanium dioxide nanocrystalline solar cell (DSSC) as bottom cell to assemble a hybrid tandem solar cell. The hybrid tandem solar cell fabricated with the thicknesses a-Si:H layer of 235 nm, ZnO/Pt interlayer of 100 nm and DSSC layer of 8.5 μm achieves a photo-to-electric energy conversion efficiency of 8.31%, a short circuit current density of 10.61 mA·cm− 2 and an open-circuit voltage of 1.45 V under a simulated solar light irradiation of 100 mW·cm− 2.  相似文献   

4.
In this paper, we firstly optimized the properties of n-SiOx nanocrystalline thin film through tuning deposition parameters by plasma enhanced chemical vapor deposition, so that we can actively control the properties of materials obtained. Secondly, we proposed using n-SiOx/Al as back reflector for amorphous silicon (a-Si:H) solar cells. Compared to Al single-layer as back reflector, adding an n-SiOx layer into the back reflector could improve the solar cell performance, which not only enhances the short circuit current density by an improvement of spectral response in the wavelength range of 550-750 nm, but also improves the open circuit voltage. With an optimized n-SiOx/Al back reflector, a-Si:H solar cells with an intrinsic layer thickness of 270 nm show 13.1% enhancement in efficiency. In addition, a-Si:H/μc-Si:H tandem solar cells with n-SiOx as intermediate reflector were also researched. As a result, it evidently balanced the current matching between top and bottom cell.  相似文献   

5.
We study the effect on various properties of varying the intrinsic layer (i-layer) thickness of amorphous/crystalline silicon heterojunction (SHJ) solar cells. Double-side monocrystalline silicon (c-Si) heterojunction solar cells are made using hot-wire chemical vapor deposition on high-lifetime n-type Czochralski wafers. We fabricate a series of SHJ solar cells with the amorphous silicon (a-Si:H) i-layer thickness at the front emitter varying from 3.2 nm (0.8xi) to ~ 96 nm (24xi). Our optimized i-layer thickness is about 4 nm (1xi). Our reference cell (1xi) performance has an efficiency of 17.1% with open-circuit voltage (Voc) of 684 mV, fill factor (FF) of 76%, and short-circuit current density (Jsc) of 33.1 mA/cm2. With an increase of i-layer thickness, Voc changes little, whereas the FF falls significantly after 12 nm (3xi) of i-layer. Transient capacitance measurements are used to probe the effect of the potential barrier at the n-type c-Si/a-Si interface on minority-carrier collection. We show that hole transport through the i-layer is field-driven transport rather than tunneling.  相似文献   

6.
Potential improvements in the performance of tandem amorphous silicon/microcrystalline silicon (a-Si:H/μc-Si:H) solar cells, related to the TCO superstrates with enhanced scattering properties are studied. In particular, optical effects of a high haze double textured (W-textured) SnO2:F TCO superstrate are analyzed and compared to the properties of the pyramidal type SnO2:F TCO superstrate. Solar cell with W-textured superstrate exhibits higher long-wavelength external quantum efficiency of the bottom μc-Si:H cell than the one with pyramidal type TCO superstrate. Optical simulations are employed to study the potential improvements of the solar cell performance if ideal haze parameter (H = 1) and/or a broad angular distribution function (Lambertian) of scattered light are applied to textured interfaces in the solar cell structure. Simulations reveal significant improvements in long-wavelength quantum efficiencies if a broad angular distribution function of scattered light is applied. Optical losses in the cells with enhanced scattering properties are analysed and evaluated in terms of short-circuit current losses in the supporting layers and losses due to reflected light.  相似文献   

7.
The effects of textured back reflectors on light trapping in a-Si:H/μc-Si:H tandem cells are investigated with textured ZnO:Ga (GZO) back contacts obtained by surface wet etching. It is observed that rough back reflectors in fabricated tandem solar cells increase the short circuit current density of the bottom cells by 8%, which is attributed to light-trapping improvement. It is shown that enhanced longer wavelength light trapping is mainly attributable to improved light scattering at the back side by comparing identical a-Si:H/μc-Si:H tandem solar cells, both with a GZO back reflector but only one with a textured back reflector. The effectiveness of the textured GZO back reflector is also demonstrated in a textured a-Si:H/μc-Si:H tandem cell with a bottom cell thickness of 2 μm, which showed higher conversion efficiency than the reference cell.  相似文献   

8.
In the present work we report the details of the preparation and characterization results of Cu2ZnSnS4 (CZTS) based solar cells. The CZTS absorber was obtained by sulphurization of dc magnetron sputtered Zn/Sn/Cu precursor layers. The morphology, composition and structure of the absorber layer were studied by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction and Raman scattering. The majority carrier type was identified via a hot point probe analysis. The hole density, space charge region width and band gap energy were estimated from the external quantum efficiency measurements. A MoS2 layer that formed during the sulphurization process was also identified and analyzed in this work. The solar cells had the following structure: soda lime glass/Mo/CZTS/CdS/i-ZnO/ZnO:Al/Al grid. The best solar cell showed an open-circuit voltage of 345 mV, a short-circuit current density of 4.42 mA/cm2, a fill factor of 44.29% and an efficiency of 0.68% under illumination in simulated standard test conditions: AM 1.5 and 100 mW/cm2.  相似文献   

9.
Atmospheric pressure Chemical Vapour Deposition has been used to deposit polycrystalline thin films of SnO2:F on aluminium foil. This foil is used commercially as a temporary substrate in the production of flexible solar cells. The resulting thin films were characterised and fabricated into a-Si:H/μc-Si:H tandem solar cells. These devices gave promising initial energy conversion efficiencies up to 7.5% and high current densities. Spectral response measurements showed good blue response indicating sufficient transparent conducting oxide/p-interface and excellent current values for the bottom cell as a result of the high quality of the SnO2:F.  相似文献   

10.
We present double layer structures consisting of ZnO:B/ZnO:B (BZO) and In2O3:Mo (IMO)/BZO films. The structure offers the unique opportunity of separating the conductivity of transparent conductive oxides from their light scattering behavior and allows their optimization for use in thin film solar cells. The layers serve as carrier transport and light trapping layers, respectively. BZO films were prepared by mid-frequency magnetic sputtering from a ZnO:B2O3 ceramic target. In order to enhance the conductivity of the BZO films, hydrogen was introduced into the sputtering atmosphere. Introducing hydrogen increased the mobility of the BZO-based double layer films to near 30 cm2/V•s. Efficient scattering was achieved by etching the film in dilute hydrochloric acid. IMO films were also tested as the transport layer. An unconventional surface morphology was obtained by etching the IMO/BZO double layer film. Using this cascading multilayer structure IMO/BZO film as the front contact in a-Si:H solar cell, 20.4% and 7.4% enhancements in short circuit current density were obtained compared to smooth IMO films and textured single layer BZO films.  相似文献   

11.
In consequence of previous investigation of individual transparent conductive oxide (TCO) and absorber layers a study was carried out on hydrogenated amorphous silicon (a-Si:H) solar cells with diluted intrinsic a-Si:H absorber layers deposited on glass substrates covered with different TCO films. The TCO film forms the front contact of the super-strata solar cell and has to exhibit good electrical (high conductivity) and optical (high transmittance) properties. In this paper we focused our attention on the influence of using different TCO’s as a front contact in solar cells with structure as follows: Corning glass substrate/TCO (800, 950 nm)/p-type μc-Si:H (∼5 nm)/p-type a-Si:H (10 nm)/a-SiC:H buffer layer (∼5 nm)/intrinsic a-Si:H absorber layer with dilution R = [H2]/[SiH4] = 20 (300 nm)/n-type a-Si:H layer (20 nm)/Ag + Al back contact (100 + 200 nm). Diode sputtered ZnO:Ga, textured and non-textured ZnO:Al [3] and commercially fabricated ASAHI (SnO2:F) U-type TCO’s have been used. The morphology and structure of ZnO films were altered by reactive ion etching (RIE) and post-deposition annealing.It can be concluded that the single junction a-Si:H solar cells with ZnO:Al films achieved comparable parameters as those prepared with commercially fabricated ASAHI U-type TCO’s.  相似文献   

12.
Thin film CdS/Cu2S heterojunction solar cells were fabricated on gold grid plated glass substrates by first depositing Cu2S by elemental evaporation of copper and sulphur and then evaporating CdS. The Cu2S layer and the grid contacts were thus sandwiched between the glass substrate and the CdS layer and were prevented from coming in contact with air and humidity. Open-circuit voltages of 450–470 mV and short-circuit current densities of 14–16 mA cm-2 were found. The cell efficiencies were between 4.8% and 5%. The degradation of the cells was minimized and the cells were found to be stable.  相似文献   

13.
In this report, we present a cost effective simple innovative approach to fabricate double layer anti-reflection (DLAR) coatings using a single material which can provide high qualities of passivation and anti-reflection property. Two layers of SiNx:H films with different refractive indices were deposited onto p-type c-Si wafer using plasma enhanced chemical vapor deposition reactor by controlling the NH3 and SiH4 gas ratio. Refractive indices of top and bottom layers were chosen as 1.9 and 2.3 respectively. The effect of passivation at the interface was investigated by effective carrier lifetime, hydrogen concentration and interface trapped density (Dit) measurements. The optical characteristic was analyzed by reflectance and transmittance measurements. A superior efficiency of 17.61% was obtained for solar cells fabricated with DLAR coating when compared to an efficiency of 17.24% for cells with SLAR coating. Further, Jsc and Voc of solar cell with DLAR coating is increased by a value of ~ 1 mA/cm2 and 4 mV respectively than cell with SLAR coating.  相似文献   

14.
Abstract

We report the effect of a disperse carbon interlayer between the n-a-Si:H layer and an aluminium zinc oxide (AZO) back contact on the performance of amorphous silicon solar cells. Carbon was incorporated to the AZO film as revealed by x-ray photoelectron spectroscopy and energy-dispersive x-ray analysis. Solar cells fabricated on glass substrates using AZO in the back contact performed better when a disperse carbon interlayer was present in their structure. They exhibited an initial efficiency of 11%, open-circuit voltage Voc = 1.6 V, short-circuit current JSC = 11 mA cm?2 and a filling factor of 63%, that is, a 10% increase in the JSC and 20% increase in the efficiency compared to a standard solar cell.  相似文献   

15.
We have deposited amorphous silicon (a-Si) and nanocrystalline silicon (nc-Si) materials and the total p-i-n configurations for solar cells in a high vacuum multichamber system ASTER using very high frequency plasma enhanced chemical vapour deposition (VHF PECVD) process. The deposition process is monitored and controlled by in-situ diagnostic tools to maintain reproducibility of the material quality. In this paper we show our recent results on single junction (amorphous silicon) and tandem (a-Si/nc-Si) cells on plastic foil using the Helianthos concept. The tandem cell efficiency on Asahi U-type SnO2:F coated glass is ~ 12% and this is achieved by employing nc-Si deposited at high pressure (p) conditions of 5 mbar and a small inter-electrode distance (d) of 5 mm. The deposition scheme of this cell on glass was adapted for the SnO2:F coated Al foil substrates from Helianthos b.v., especially taking into account the expansion of the foil during deposition. The inter-electrode distance d was one of the variables for this optimisation process. Depositions at four inter-electrode distances of 6 mm, 8 mm, 10 mm and 12 mm (keeping the pressure-distance product constant) revealed that the deposition rate increases at higher distances, reaching 0.6 nm/s at a d of 10 mm and pressure p of 3.0 mbar. The Raman crystalline ratio showed a monotonic increase with the combination of higher d and lower p. Tandem cells with an area of 2.5 cm2 on plastic foil fabricated by the Helianthos concept and employing the above mentioned nc-Si made at 0.6 nm/s in the bottom cell and a-Si in the top cell, showed an efficiency of 8.12%, with a short circuit current density of 10 mA/cm2. The combined deposition time of the photoactive silicon layers of the top and bottom cells amounted to only 85 min.  相似文献   

16.
We report on the basic properties of amorphous/crystalline hetero-junctions (a-Si:H/c-Si), their effects on the recombination of excess carriers and its influence on the a-Si:H/c-Si hetero-junction solar cells. For that purpose we measured the gap state density distribution of thin a-Si:H layers and determined its dependence on deposition temperature and doping by an improved version of near-UV-photoelectron spectroscopy. Furthermore, the Fermi level position in the a-Si:H and the valence band offset were directly measured. In combination with interface sensitive methods such as surface photovoltage analysis and our numerical simulation program AFORS-HET, we found an optimum in wafer pretreatment, doping and deposition temperature for efficient a-Si:H/c-Si solar cells without an i-type a-Si:H buffer layer. We reached at maximum 19.8% certified efficiency by a deposition at 210 °C with an emitter doping of 2000 ppm of B2H6 on a well cleaned pyramidally structured c-Si(n) wafer.  相似文献   

17.
Cu2ZnSnS4 (CZTS) solar cell with superstrate structure of fluorine-doped tin oxide glass/TiO2/In2S3/CZTS/Carbon was prepared entirely by non-vacuum processes. The compact TiO2 window and In2S3 buffer layers, CZTS absorber layer and Carbon electrode layer were prepared by spray pyrolysis method, ball milling and screen printing combination processes and screen printing process, respectively. The short-circuit current density, open-circuit voltage, fill factor and conversion efficiency of the best fabricated solar cell are 8.76 mA/cm2, 250 mV, 0.27 and 0.6%, respectively. The fabrication process for the CZTS solar cell did not employ any vacuum conditions or high-toxic materials (such as CdS, H2Se, H2S or Se).  相似文献   

18.
The oriented ZnO nanowire-covered TiO2 nanoparticle composite film electrodes were fabricated by screen-printed TiO2 nanoparticle layer on conducting glass and low-temperature hydrothermal growth of ZnO nanowires. The film morphology, composition and crystalline structure were confirmed by field-emission scanning electron microscopy, energy dispersive X-ray spectra and X-ray diffraction patterns respectively. Dye-sensitized solar cells based on the composite electrode gained short-circuit current density of 8.04 mA/cm2, open-circuit photovoltage of 0.67 V, fill factor of 0.40, and overall conversion efficiency of 2.15%.  相似文献   

19.
P-i-n single-junction hydrogenated amorphous silicon (a-Si:H) thin film solar cells were successfully fabricated in this study on a glass substrate by high density plasma chemical vapor deposition (HDP-CVD) at low power of 50 W, low temperature of 200°C and various hydrogen dilution ratios (R). The open circuit voltage (Voc ), short circuit current density (Jsc ), fill factor (FF) and conversion efficiency (η) of the solar cell as well as the refractive index (n) and absorption coefficient (α) of the i-layer at 600 nm wavelength rise with increasing R until an abrupt drop at high hydrogen dilution, i.e. R > 0.95. However, the optical energy bandgap (Eg ) of the i-layer decreases with the R increase. Voc and α are inversely correlated with Eg . The hydrogen content affects the i-layer and p/i interface quality of the a-Si:H thin film solar cell with an optimal value of R = 0.95, which corresponds to solar cell conversion efficiency of 3.85%. The proposed a-Si:H thin film solar cell is expected to be improved in performance.  相似文献   

20.
We investigate how TiO2 nanopatterns formed onto ZnO:Al (AZO) films affect the performance of hydrogenated amorphous silicon (a-Si:H) solar cells. Scanning electron microscopy results show that the dome-shaped TiO2 nanopatterns (300 nm in diameter) having a period of 500 nm are formed onto AZO films and vary from 60 to 180 nm in height. Haze factor increases with an increase in the height of the nanopatterns in the wavelength region below 530 nm. Short circuit current density also increases with an increase in the height of the nanopatterns. As the nanopatterns increases in height, the fill factor of the cells slightly increases, reaches maximum (0.64) at 100 nm, and then decreases. Measurements show that a-Si:H solar cells fabricated with 100 nm-high TiO2 nanopatterns exhibit the highest conversion efficiency (6.34%) among the solar cells with the nanopatterns and flat AZO sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号