首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, we have performed electrical characterization of oxides deposited via rapid thermal chemical vapor deposition using SiH4 and N2O. We have investigated the effect of temperature, pressure, and SiH4 to N2O ratio on the electrical and material properties of as-deposited films. We have found that as-deposited oxides deposited at low temperatures, low pressures, and with a low silane to nitrous oxide ratio of ~0.5% give good material and electrical properties. The as-deposited films are stoichiometric in nature and have high deposition rates. As-deposited films had very low Dit values, high breakdown fields, and excellent subthreshold swing. The leakage currents and metal oxide semiconductor field effect transistor current drive, although lower than thermal oxides, were found to be quite acceptable. We have also investigated the thickness dependence of the films and found that as the film thickness is reduced below 50Å, the reliability improves for all oxides including the silicon-rich deposited oxides.  相似文献   

2.
The origin of the radiative recombination leading to yellow luminescence (YL) has been elucidated by the study of luminescence properties of GaN films grown with two different gas feeding methods. GaN films were grown on a (0001) sapphire substrate in a rapid thermal chemical vapor deposition (RTCVD) reactor. GaN films emitted two different luminescence energies, 2.2 and 3.47 eV, depending on the introducing position of hydrogen gas in the growth reactor. The distribution of the TMGa flow and gas phase reactions in the reactor were investigated to understand the effect of the gas feeding methods on the optical properties of GaN films. The results suggest that YL is related to Ga vacancies in the grown films.  相似文献   

3.
The miniaturization of devices in ULSI circuits are accompanied by shrinking vertical, as well as horizontal, device parameters such as junction depth, lateral impurity diffusion and film thicknesses. This is achieved by decoupling process steps,i.e. processing at a reduced thermal budget. However, as device dimensions decrease, greater demand in transistor noise immunity and reliability may not be achievable with low-temperature (<900° C) oxidation processes. Low temperature CVD ONO (oxide-nitride-oxide) dielectrics have been evaluated for applications in ULSI gate as well as capacitor structures. Time dependent dielectric breakdown data have shown that ONO has longer lifetime than thermal oxide of equivalent thickness. Such stacked dielectrics nevertheless result in complex processing steps. With the advances in rapid thermal processing equipment today, rapid thermal oxide (RTO) has been shown to offer potential benefits of high temperature without significant addition to the overall thermal budget. We have shown that transistors with RTO gate oxides exhibit longer lifetime and lower noise compared to those with furnace grown gate oxides. We have also shown that interpoly RTO oxides have remarkable dielectric strength of >8 MV/cm. For enhanced radiation hardness and impurity masking capability as well as higher permittivity, rapid thermal nitrided oxides may be a potential choice deserving further evaluation. These nitrided oxides must be reoxidized to reduce densities of interface states and electron traps created during the nitridation process.  相似文献   

4.
In this paper, the influence of various pre-oxidation cleanings on the Si/SiO2 interface and the oxide surface roughness is investigated. Different types of Vapor Phase Cleanings (VPC) are performed in an integrated STEAG AST cluster module and are compared to a standard wet cleaning process. The VPC uses Anhydrous Hydrogen Fluoride (AHF) and additional ozone cleaning. Directly after the cleaning, oxidation in pure oxygen (O2) is carried out in an integrated STEAG AST Rapid Thermal Processing (RTP) cluster module. Nitrided oxides are formed by annealing in pure nitric oxide (NO) gas directly after the oxidation. The nitrogen incorporation and distribution in the oxide is investigated using secondary ion mass spectroscopy (SIMS). The nitrogen concentration at the Si/SiO2 interface depends on the time and/or temperature of the NO annealing. For a 900°C annealing, the nitrogen incorporation varies from 0.5 at.% for a 5 s anneal to 2.5 at.% for a 60 s anneal. The nitrogen concentration of the oxides can be correlated with the different types of precleaning sequences which seems to be an effect of the different fluorine contents obtained after various cleaning procedures. The surface roughness of oxide layers formed after different pre-cleaning sequences is analyzed by Atomic Force Microscopy (AFM). A decrease in surface roughness is measured for oxidation performed at higher temperature. and for rapid thermal oxides produced after a cleaning procedure using AHF and ozone.  相似文献   

5.
Aluminum-doped zinc oxide films exhibiting a rough surface morphology are deposited on glass substrates utilizing expanding thermal plasma. Spectroscopic ellipsometry is used to evaluate optical and electronic film properties. The presence of aluminum donors in doped films is confirmed by a shift in the zinc oxide bandgap energy from 3.32 to 3.65 eV. In combination with transmission reflection measurements in the visible and NIR ranges, charge carrier densities, optical mobilities, and film resistivities have been obtained from the free carrier absorption. Film resistivities are consistent with direct measurements, values as low as 6.0×10−4 ω cm have been obtained. The interdependence of electrical conductivity, film composition, and film morphology is addressed.  相似文献   

6.
The electrical characteristics of thermally nitrided gate oxides on n-type 4H-SiC, with and without rapid thermal annealing processes, have been investigated and compared in this paper. The effects of annealing time (isothermal annealing) and annealing temperature (isochronal annealing) on the gate oxide quality have also been systematically investigated. After rapid isothermal and isochronal annealings, there has been a significant increase in positive oxide-charge density and in oxide-breakdown time. A correlation between the density of the positive oxide charge and the oxide breakdown reliability has been established. We proposed that the improvement in the oxide-breakdown reliability, tested at electric field of 11 MV/cm, is attributed to trapping of injected electron by the positive oxide charge and not solely due to reduction of SiC-SiO2 interface-trap density.  相似文献   

7.
Transmission electron microscopy (TEM) and computer-controlled parallel electron energy loss spectroscopy (PEELS) are used to obtain the structure of and compositional profile across a thin oxide film deposited by remote plasma enhanced chemical vapor deposition at 300°C. The film, believed to be stoichio-metrically correct SiO2 as determined by Auger electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS), was found to be oxygen rich with a composition non-uniformity across it. The existence of an abundance of oxygen was supported by capacitance-voltage measurements and etch rate studies. The non-uniformity was observed in TEM images. These results show what a powerful characterization technique computer-controlled PEELS can be. In addition, this is the first time that PEELS profiling was used to help interpret TEM images.  相似文献   

8.
Dielectric PbTiO3-thin films were prepared on p-Si(100) substrate by plasma enhanced metalorganic chemical vapor deposition using high purity Ti(O-i-C3H7)4, Pb(tmhd)2, and oxygen. As-deposited films were post-treated by rapid thermal annealing method, and the effect of annealing was examined under various conditions. The deposition process was controlled by mixed-control scheme at temperatures lower than 350°C, but controlled by heterogeneous surface reaction at temperatures greater than 350°C. The as-deposited films showed PbO structure at 350∼400°C, but (100) and (101) PbTiO3 orientations started to appear at 450°C. The deposition rate was increased with rf power due to the enhanced dissociation of Ti and Pb precursors. It was found that the concentration of oxygen plays an important role in crystallization of PbTiO3 during the rapid thermal annealing. A linear relationship was obtained between the dielectric constant of PbTiO3 films and the annealing temperature. However, the surface roughness and leakage current density increased mainly due to the defects caused by volatilization of lead and the interface layer formed during the high temperature annealing.  相似文献   

9.
采用脉冲激光沉积(PLD)法在Pt/Ti/SiO2/Si(001)基片上制备了Ba0.6Sr0.4TiO3(BST)薄膜,对Pt/BST/Pt电容器在空气中进行400℃快速退火(RTA)处理,研究了快速退火对Pt/BST/Pt电容器的结构和性能的影响。结果表明:快速退火虽然对BST薄膜的结晶质量影响较小,但却极大改善了Pt/BST/Pt电容器的电学性能。当测试频率为100kHz、直流偏压为0V时,介电损耗从快速退火前的0.07减小到0.03,介电常数和调谐率略有增加。快速退火后负向漏电流过大现象得到了明显抑制,正负向漏电流趋于对称,在300×103V/cm电场强度下,漏电流密度为4.83×10–5A/cm2。  相似文献   

10.
ZnO nanotips have been grown on Si (100) using metalorganic chemical vapor deposition (MOCVD). The growth temperature is optimized for good crystallinity, morphology, and optical properties. ZnO nanotips exhibit a strong near band edge emission of ∼376 nm at room temperature with negligible green band emission. Pregrowth substrate treatment using diluted hydrofluoric acid (HF) and minimized oxygen exposure before the initial growth significantly reduces the interfacial SiO2 thickness, while maintaining good morphology. An n-ZnO nanotips/p-Si diode is fabricated and its I–V characteristic is measured. The threshold voltage of the diode is found to be below 2.0 V with small reverse leakage current. The ZnO/p-Si diodes provide the possibility of integrating the ZnO nanotips with Si-based electronic devices.  相似文献   

11.
Electrical and optical properties of InP grown by low-pressure metalorganic chemical vapor deposition using triethylindium (TEI) and phosphine (PH3) are described. It was found that the net ionized impurity concentration shows a monotonic decrease as the PH3/TEI ratio increases. Similarly, the electron mobility and the photoluminescent intensity increases with the PH3/TEI ratio. The effect of growth temperature has also been investigated in the range from 500 to 650°C. For a variety of PH3/TEI ratios, the optimal growth temperature is in the range of 550×600éC. In terms of impurities, the dominant shallow acceptors are Zn and possibly C, and the most common deep acceptor is Mn. The best material obtained shows a net electron concentration of 1 × 1015 cm−3 with an associated 77K electron mobility of 41,000 cm2 /Vsec, implying that the total ionized,impurity concentration is in the range of 3'4 □ 1015 cm−3  相似文献   

12.
Effects of rapid thermal annealing on the characteristics of Cu films deposited from the (hfac)Cu(VTMS) precursor and on the barrier properties of TiN layers were studied. By the post-annealing, the electrical characteristics of Cu/TiN and the microstructures of Cu films were significantly changed. The properties of Cu films were more sensitive to the annealing temperature than the annealing time. Sheet resistances were decreased in 400–450°C ranges, and abrupt increases were observed above 750°C. It was also found that the copper films showed pronounced grain growth with the (111) preferred orientation. The grain growth and condensation of copper were observed below 500°C without formation of the CuO and Cu2O phase resulting in surface degradation. Above 500°C, the oxide compound of copper was partially formed on the surface and the inter-reaction on the Cu-TiN interface was started. The inter-reaction of Cu-Ti and Cu-Si interface vigorously occurred and the surface roughness was continuously deteriorated above 650°C. It revealed that the optimum annealing conditions for MOCVD-Cu/PVD-TiN structures to enhance the electrical characteristics without degradation of TiN barriers were in the range of 400°C.  相似文献   

13.
A growth parameter study was made to determine the proper of a SiGe superlattice-type configuration grown on Si substrates by chemical vapor deposition (CVD). The study included such variables as growth temperature, layer composition, layer thickness, total film thickness, doping concentrations, and film orientation. Si and SiGe layers were grown using SiH4 as the Si source and GeH4 as the Ge source. When intentional doping was desired, diluted diborane for p-type films and phosphine for n-type films were used. The study led to films grown at ∼1000°C with mobilities from ∼20 to 40 percent higher than that of epitaxial Si layers and ∼100 percent higher than that of epitaxial SiGe layers grown on (100) Si in the same deposition system for net carrier concentrations of ∼8x1015 cm-3 to ∼2x1017 cm-3. Enhanced mobilities were found in multilayer (100)-oriented Si/Si1-xGex films for layer thicknesses ≥400A, for film thicknesses >2μm, and for layers with x = 0.15. No enhanced mobility was found for (111)-oriented films and for B-doped multilayered (100)-orlented films. Supported in part by NASA-Langley Research Center, Hampton, VA, Contract NAS1-16102 (R. Stermer & A. Fripp, Contr. Mon.)  相似文献   

14.
利用MOCVD生长了不同Mg流量的P型GaN样品。研究了Mg流量对MOCVD生长的P型GaN薄膜的电学特性、表面形貌及晶体质量的影响。结果表明利用MOCVD制备高质量的P型GaN薄膜,Mg流量应处于一个合适的范围,Mg流量过低,薄膜的空穴浓度低,电学特性不好;Mg流量过高,则会产生大量的缺陷,晶体质量与表面形貌变差,Mg的活化率也降低,并且自补偿效应更加严重,最终使得空穴浓度降低,电学特性变差。将优化的条件应用于蓝光发光管的外延生长,并制备了器件,在20mA的注入电流下,输出功率为6.5mW,正向压降3V,反向击穿电压为20V。  相似文献   

15.
通过在热丝化学气相沉积(HWCVD)制备纳米晶硅 薄膜过程中施加衬底偏压,研 究衬底偏压对HWCVD制备纳米晶硅薄膜结晶性能的影响。利用拉曼(Raman)光谱,X射线 衍射(XRD)和扫描电子显微镜(SEM)对所制备的纳米晶硅薄膜的结构性能进行分析。结果表 明,与未施加衬底偏压的薄膜相比,当衬底偏压为-300V时,薄膜 的晶化率由42.2%升高至 46.2%;当衬底偏压升高至-600V时,晶化率 又降至40.6%;未施加衬底偏压与施加-300V 偏压的纳米晶硅薄膜表面由长约200nm、宽约100nm的晶粒构成,-600V衬底偏压的薄 膜表面晶粒尺寸明显变小,并且出现大量非常细小的晶粒。分析产生上述现象的原因,主要 与 高温热丝发射电子、电子在电场作用下加速运动并与反应气体、基团碰撞发生能量传递有关 。  相似文献   

16.
采用反应热蒸发法制备ITO薄膜,详细研究了氧分压对薄膜的晶体结构及光电性能的影响。当氧分压较小时,在XRD谱中发现了对应于SnO(112)晶向的衍射峰,随着氧分压的增大,薄膜的晶体结构变得完整,性能得到了改善,在较低的衬底温度下(TS=160℃)获得最小的电阻率为5.3×10-4Ωcm,但是,当更多的氧进入薄膜后一方面填充了氧空位,另一方面与Sn4+相结合形成复合中性粒子(Sn+In)2O"i,使得锡的掺杂作用减弱,薄膜的电阻率增大,同时在近红外区域的透过率增大。  相似文献   

17.
The growth of high purity InAs by metalorganic chemical vapor deposition is reported using tertiarybutylarsine and trimethylindiμm. Specular surfaces were obtained for bulk 5-10 μm thick InAs growth on GaAs substrates over a wide range of growth conditions by using a two-step growth method involving a low temperature nucleation layer of InAs. Structural characterization was performed using atomic force microscopy and x-ray diffractometry. The transport data are complicated by a competition between bulk conduction and conduction due to a surface accumulation layer with roughly 2–4 × 1012 cm−2 carriers. This is clearly demonstrated by the temperature dependent Hall data. Average Hall mobilities as high as 1.2 x 105 cm2/Vs at 50K are observed in a 10 μm sample grown at 540°C. Field-dependent Hall measurements indicate that the fitted bulk mobility is much higher for this sample, approximately 1.8 × 105 cm2/Vs. Samples grown on InAs substrates were measured using high resolution Fourier transform photoluminescence spectroscopy and reveal new excitonic and impurity band emissions in InAs including acceptor bound exciton “two hole transitions.” Two distinct shallow acceptor species of unknown chemical identity have been observed.  相似文献   

18.
One of the many remarkable properties of diamond is its thermal conductivity, about five times that of copper and the highest of all known materials. The high thermal conductivity in combination with the relative ease of diamond film growth by chemical vapor deposition process makes the material suitable for many applications such as thermal management in high power electronic circuits. For thermal managements applications, various processing steps are needed for the diamond films, such as the metallization for reliable solder bonding, metallurgical processes for planarizing of the faceted growth surface and removal of fine-grained diamond regions with poor thermal conductivity. This paper will review the properties and processing of diamond films for thermal management applications.  相似文献   

19.
Deposition and electrical properties of high dielectric constant (high-k) ultrathin ZrO2 films on tensilely strained silicon (strained-Si) substrate are reported. ZrO2 thin films have been deposited using a microwave plasma enhanced chemical vapor deposition technique at a low temperature (150 °C). Metal insulator semiconductor (MIS) structures are used for high frequency capacitance–voltage (CV), current–voltage (IV), and conductance–voltage (GV) characterization. Using MIS capacitor structures, the reliability and the leakage current characteristics have been studied both at room and high temperature. Schottky conduction mechanism is found to dominate the current conduction at a high temperature. Observed good electrical and reliability properties suggest the suitability of deposited ZrO2 thin films as an alternative as gate dielectrics. Compatibility of ZrO2 as a gate dielectric on strained-Si is shown.  相似文献   

20.
MOCVD生长源流量对p型GaN薄膜特性影响的研究   总被引:1,自引:1,他引:0  
利用金属有机物化学气相淀积(MOCVD)技术在蓝宝石衬底上生长p型GaN:Mg薄膜,对不同二茂镁(CP2Mg)流量和Ⅴ族和Ⅲ族摩尔(Ⅴ/Ⅲ)比生长的p型GaN:Mg薄膜特性进行研究。研究表明,增加Ⅴ/Ⅲ比,可以降低螺旋位错密度,提高p型GaN晶体质量。当Ⅴ/Ⅲ比为3 800时,Cp2Mg流量最高为170sccm,获得p型GaN(002)面峰值半高宽(FWHM)最窄为232"。同时研究发现,单纯提高Ⅴ/Ⅲ比对降低刃型位错影响较不明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号