首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
对碳素方钢管在集中荷载作用下的腹板屈曲性能进行单调加载的试验研究。实施50个不同边界条件、加载条件、支承板宽度和截面高度的碳素方钢管试件的腹板屈曲性能试验。介绍了碳素方钢管腹板屈曲试验方案,描述了碳素方钢管在端部和内部集中荷载作用下的破坏模式,给出荷载-端位移曲线以及腹板区域应变强度分布曲线,并将边界条件、加载条件、支承板宽度和截面高度对碳素方钢管腹板屈曲极限承载力和延性的影响进行讨论。试验研究结果表明:碳素方钢管腹板屈曲极限承载力随着支承板宽度的增大而增大;当支承板宽度为50mm和100mm时,腹板高厚比为18时极限承载力达到最大;当支承板宽度为150mm时,腹板高厚比为12.55时腹板屈曲极限承载力达到最大;腹板高厚比为24.67时达到腹板屈曲极限承载力的最小值。受压腹板中部应变测点全部进入塑性并最终形成塑性铰区域。内部一侧翼缘加载(IOF)的极限承载力最高,内部两侧翼缘加载(ITF)的极限承载力次之,端部一侧翼缘加载(EOF)和端部两侧翼缘加载(ETF)的极限承载力最低。有限元方法较好地模拟了试验破坏模式和极限承载力。采用中国钢结构设计规范的碳素方钢管腹板屈曲极限承载力计算值远大于其腹板屈曲极限承载力试验值,中国钢结构设计规范用于腹板屈曲承载力的计算偏于危险;采用欧洲钢结构设计规范的碳素方钢管腹板屈曲极限承载力计算值又远小于其腹板屈曲极限承载力试验值,欧洲钢结构设计规范用于腹板屈曲承载力的计算偏保守。提出的碳素方钢管腹板屈曲极限承载力计算公式则较好地预测了试验值。  相似文献   

2.
为获得矩形钢管高强混凝土上翼缘工字形梁的屈曲荷载和屈曲模式,文中共设计14根简支梁,考察主要参数为混凝土强度等级、钢管翼缘高宽比、腹板厚度及高度、加劲肋和跨度.利用ANSYS软件建立有限元模型,对14根简支梁开展特征值屈曲分析,获得组合梁的前5阶屈曲荷载和模式,明确混凝土强度、钢管翼缘高宽比、腹板厚度及高度、加劲肋和跨度对屈曲荷载的影响规律.结果表明增加钢管翼缘高宽比、减小跨度及设置加劲肋均会显著提高梁的屈曲荷载,增加腹板的厚度对梁的屈曲荷载影响不明显,增加腹板高度和提高混凝土强度并不能有效提高梁的屈曲荷载.为进一步开展该类组合梁的非线性屈曲分析奠定基础.  相似文献   

3.
本文用能量法对刚性基底矩形钢板的屈曲性能进行了理论分析研究,利用满足边界条件的屈曲位移函数得到屈曲系数的计算公式,然后进一步用于矩形钢管混凝土轴心受压局部屈曲问题的分析和计算,得到矩形钢管混凝土屈曲系数计算公式,最后根据修正的温特(G.Winter)公式,推导矩形钢管混凝土全截面有效的宽厚比限值及其局部屈曲强度计算公式,计算结果与试验结果进行了比较,吻合较好。本文的研究成果可为相关研究提供参考。  相似文献   

4.
为研究矩形钢管混凝土壁板的屈曲后强度,根据平板的弹塑性屈曲理论并考虑残余应力的影响,确定了板件发生塑性屈曲、弹塑性屈曲和弹性屈曲的正则化界限宽厚比。采用试验验证的有限元模型进行了宽厚比为20~150、钢材屈服强度为275~960 MPa的矩形钢管混凝土壁板局部屈曲分析,以界限宽厚比为控制点,根据有限元结果拟合出了矩形钢管混凝土壁板的有效宽度计算式。研究结果表明:弹性屈曲板件的屈曲后强度提高程度显著高于弹塑性屈曲板件;屈曲后强度的提高程度与钢材屈服强度无明显相关性;与无面外约束钢板相比,混凝土的单侧约束作用可使板件的屈曲后强度普遍提高约50%;提出的矩形钢管混凝土壁板的正则化界限宽厚比和有效宽度计算式与试验结果吻合较好,有效宽度试验值比所提公式计算值平均增大7.2%,标准差为0.091。  相似文献   

5.
对单轴受弯的冷弯薄壁方矩形钢管的局部稳定承载力设计方法展开研究。基于试验验证的非线性有限元建模方法,对不同宽厚比和高宽比组配下的单轴受弯方矩形截面钢构件进行参数分析,探究翼缘和腹板的相关作用和应变强化对构件局部屈曲的影响情况。采用等效变形的概念,提出将连续强度法(CSM)应用于冷弯薄壁方矩形钢构件的设计。通过建议承载力计算式与试验、有限元模拟结果及各国规范方法的比较,证明连续强度法的有效性。  相似文献   

6.
针对内隔板式方钢管混凝土柱-钢梁节点的节点局部屈服抗弯承载力计算的方法,探讨并分析了CECS159∶2004《矩形钢管混凝土结构技术规程》设计规定与日本Koji Morita提出的两种基于屈服线理论计算方法的特点,并将轴压作用分别引入到3种计算方法中,得到相应考虑轴压作用的改进后计算方法。为比较上述各计算方法梁柱翼缘宽度比适用范围,对梁柱翼缘宽度比进行参数分析,并利用已有试验数据进行对比。为说明轴压作用对计算精度与安全性的影响,对改进前后计算方法的计算结果与已有试验数据进行对比。对比分析结果表明:改进的采用联合屈服机制的计算方法适用于任意梁柱翼缘宽度比情况,具有计算精度高、计算偏于安全的优点,且计算方便,宜于设计应用。  相似文献   

7.
采用波形钢腹板局部屈曲强度、沿腹板高度方向的整体屈曲强度以及两者耦合屈曲强度的计算方法,得到3种屈曲强度远大于钢材的剪切屈服应力,即在其发生剪切屈服之前,波形钢腹板不会发生屈曲破坏。给出了局部屈曲形态和波形钢腹板应力计算结果,验证了设计选用12mm厚的波形钢腹板满足要求。  相似文献   

8.
葛尧  余绍锋 《工业建筑》2012,(Z1):329-332
局部屈曲是薄壁矩形钢管的一种主要屈曲模式,分析时应考虑板组间的相关作用。开孔后,将导致应力重分布,进而改变构件的屈曲性能。应用ANSYS有限元软件对薄壁开孔矩形钢管构件轴压下的局部屈曲性能进行了分析研究,讨论了板件宽厚比、翼缘腹板宽度比、开孔率等参数对局部屈曲性能的影响。  相似文献   

9.
基于对偏心压力下带肋矩形钢管混凝土短柱管壁的屈曲性能分析,采用能量法推导了矩形长边及短边钢管管壁局部屈曲临界应力,并讨论了应力梯度系数及矩形截面长宽比等参数对屈曲应力的影响。结果表明:当柱截面及材料给定的情况下,应力梯度系数φ越小(即偏心距越大),长边管壁屈曲系数越大,局部稳定性能越好;当钢管厚度及加劲肋一定的情况下,长边管壁与短边管壁临界应力之比与截面长宽比及应力梯度系数有关,设计时应尽可能使长短边管壁临界应力接近,且应不小于钢材屈服强度fy。  相似文献   

10.
对C型或Z型檩条受弯时的畸变屈曲进行分析,指出了目前澳大利亚和美国规范采用薄壁构件理论分析畸变屈曲的方法,过高估计了翼缘-卷边的刚度,因而采用降低腹板对翼缘约束的方式,使得结果符合有限条方法的结果。通过采用卷边等效抗弯刚度,对翼缘采用板件理论研究,推导了腹板对翼缘的约束刚度计算公式,并将其用于翼缘-卷边的畸变屈曲计算和局部屈曲计算,与有限元方法的计算结果对比表明,得到的屈曲系数精度良好且偏安全。  相似文献   

11.
主办单位:新加坡国立大学 新加坡钢结构协会 钢结构进展国际会议是举办了多年的盛会,第一次到第三次会议在中国香港召开,第四次会议于2005年在中国上海召开。大会旨在为钢结构的科研工作者和工程师们提供一个平台,使他们能够就钢结构、铝结构和组合结构的分析、性能、设计以及施工等方面的最新进展互相交流探讨。  相似文献   

12.
Experimental and numerical investigations of cold-formed stainless steel square and rectangular hollow sections subjected to concentrated bearing load are presented in this paper. A total of 124 data are presented that include 64 test results and 60 numerical results. The tests were performed on austenitic stainless steel type 304, high strength austenitic and duplex material. The measured web slenderness value of the tubular sections ranged from comparatively stocky webs of 6.2 to relatively more slender webs of 61.4. The tests were carried out under end and interior loading conditions. A non-linear finite element model is developed and verified against experimental results. Geometric and material non-linearities were included in the finite element model. The material nonlinearity of the flat and corner portions of the specimen sections were carefully incorporated in the model. It was shown that the finite element model closely predicted the web crippling strengths and failure modes of the tested specimens. Hence, the model was used for an extensive parametric study of cross-section geometries, and the web slenderness value ranged from 52.0 to 206.7. The test results and the web crippling strengths predicted from the finite element analysis were compared with the design strengths obtained using the American, Australian/New Zealand and European specifications for stainless steel structures. A unified web crippling equation with new coefficients for cold-formed stainless steel square and rectangular hollow sections subjected to concentrated bearing load is proposed. It is demonstrated that the proposed web crippling equation is safe and reliable using reliability analysis.  相似文献   

13.
The paper presents a series of tests on cold-formed stainless steel tubular X-joints. The tubular X-joint specimens were tested without chord preload as well as with three different levels of preload applied to the chord members. The test specimens were fabricated from square and rectangular hollow sections as brace and chord members. A total of 32 tests was performed. High strength stainless steel (duplex and high strength austenitic) and normal strength stainless steel (AISI 304) specimens were tested. The test results were compared with the design strengths obtained using the CIDECT Guide and Eurocode for carbon steel structures. It is shown that the design strengths predicted by the current design specifications are very conservative for the test specimens calculated using the 0.1%, 0.2%, 0.5% and 1.0% proof stresses as the yield stresses. The 0.2% proof stress is comparatively more reasonable to predict the design strengths of stainless steel tubular X-joints for both ultimate limit state and serviceability limit state.  相似文献   

14.
Ben Young  Wing-Man Lui 《Thin》2006,44(2):224-234
The paper describes a test program on cold-formed high strength stainless steel compression members. The duplex stainless steel having the yield stress and tensile strength up to 750 and 850 MPa, respectively, was investigated. The material properties of the test specimens were obtained from tensile coupon and stub column tests. The test specimens were cold-rolled into square and rectangular hollow sections. The specimens were compressed between fixed ends at different column lengths. The initial overall geometric imperfections of the column specimens were measured. The strength and behaviour of cold-formed high strength stainless steel columns were investigated. The test strengths were compared with the design strengths predicted using the American, Australian/New Zealand and European specifications for cold-formed stainless steel structures. Generally, it is shown that the design strengths predicted by the three specifications are conservative for the cold-formed high strength stainless steel columns. In addition, reliability analysis was performed to evaluate the current design rules.  相似文献   

15.
Ben Young  Feng Zhou 《Thin》2008,46(4):352-361
The web crippling design rules in the current American Aluminum Design Manual, Australian/New Zealand Standard, and European code for aluminum structures are assessed. Test strengths of aluminum square and rectangular hollow sections under end-two-flange (ETF) and interior-two-flange (ITF) loading conditions are compared with the design strengths (capacities) obtained using the aforementioned specifications. Furthermore, the test strengths are also compared with the design strengths obtained using the unified web crippling equation as specified in the North American Specification for cold-formed steel structural members. It is shown that the design strengths predicted by the aforementioned specifications are either quite conservative or unconservative, but in general the predictions are unreliable resulting from reliability analysis. Hence, two different unified web crippling equations for aluminum square and rectangular hollow sections under ETF and ITF loading conditions are proposed. The proposed unified design equation (A) uses the same technique as the North American Specification for the unified web crippling equation with new coefficients of C, CN and Ch determined based on the test results obtained in this study. The proposed unified design equation (B) is similar to the unified web crippling equation in the NAS Specification, and the effect of the ratio N/h is also considered, where N is bearing length and h is the depth of the flat portion of web. Generally, it is shown that the proposed unified web crippling equation (B) compares well with the test results.  相似文献   

16.
Cold-formed stainless steel tubular structural members which may experience web crippling failure due to localise concentrated loads or reactions are investigated. A series of tests on fibre-reinforced polymer (FRP) strengthening of cold-formed stainless steel tubular structural members subjected to End-Two-Flange and Interior-Two-Flange loading conditions is presented. The strengthening only applied to a localise area of the members under concentrated load. A total of 58 web crippling tests were conducted. The investigation mainly focused on the effects of different surface treatment, different adhesive, and FRP for strengthening of stainless steel tubular sections against web crippling. The behaviour of stainless steel members strengthened by different widths of FRP plate against web crippling has been also investigated in this study. The test specimens consisted of ferritic stainless steel EN 1.4003 square and rectangular hollow sections. Two different surface treatments were considered. Furthermore, six different adhesives and six different FRPs were also considered in this study. The properties of adhesive and FRP as well as the bonding between the FRP and stainless steel tube have significant influence on the effectiveness of the strengthening. Most of the strengthened specimens were failed by debonding of FRP plates form the stainless steel tubes. Six different failure modes were observed in the tests, namely the adhesion, cohesion, combination of adhesion and cohesion, interlaminar failure of FRP plate, FRP delaminating failure and web crippling failure. The failure loads, failure modes, and the load-web deformation behaviour of the ferritic stainless steel sections are presented in this study. It was found that the web crippling capacity of ferritic stainless steel tubular sections may increase up to 51% using FRP strengthening.  相似文献   

17.
This paper investigates the buckling behaviour of cold-formed high strength stainless steel stiffened and unstiffened slender square and rectangular hollow section columns. The high strength duplex material is austenitic-ferritic stainless steel approximately equivalent to EN 1.4462 and UNS S31803. The columns were compressed between fixed ends at different column lengths. A nonlinear finite element model has been developed to investigate the behaviour of stiffened slender square and rectangular hollow section columns. The column strengths, load-shortening curves as well as failure modes were predicted for the stiffened and unstiffened slender hollow section columns. An extensive parametric study was conducted to study the effects of cross-section geometries on the strength and behaviour of the stiffened and unstiffened columns. The investigation has shown that the high strength stainless steel stiffened slender hollow section columns offer a considerable increase in the column strength over that of the unstiffened slender hollow section columns. The column strengths predicted from the parametric study were compared with the design strengths calculated using the American Specification, Australian/New Zealand Standard and European Code for cold-formed stainless steel structures. It is shown that the design strengths obtained using the three specifications are generally conservative for the cold-formed stainless steel unstiffened slender square and rectangular hollow section columns, but slightly unconservative for the stiffened slender square and rectangular hollow section columns.  相似文献   

18.
This paper describes the numerical investigation of cold-formed stainless steel tubular T-joints, X-joints and X-joints with chord preload using finite element analysis. The stainless steel joints were fabricated from square hollow section (SHS) and rectangular hollow section (RHS) brace and chord members. The geometric and material nonlinearities of stainless steel tubular joints were carefully incorporated in the finite element models. The joint strengths, failure modes as well as load-deformation curves of stainless steel tubular joints were obtained from the numerical analysis. The nonlinear finite element models were calibrated against experimental results of cold-formed stainless steel SHS and RHS tubular T- and X-joints. Good agreement between the experimental and finite element analysis results was achieved. Therefore, an extensive parametric study of 172 T- and X-joints was then carried out using the verified finite element models to evaluate the effects of the strength and behaviour of cold-formed stainless steel tubular joints. The joint strengths obtained from the parametric study and tests were compared with the current design strengths calculated using the Australian/New Zealand Standard for stainless steel structures, CIDECT and Eurocode design rules for carbon steel tubular structures. Furthermore, design formulae of cold-formed stainless steel tubular T- and X-joints are proposed. A reliability analysis was performed to assess the reliability of the current and proposed design rules. It is shown that the design strengths calculated using the proposed equations are generally more accurate and reliable than those calculated using the current design rules.  相似文献   

19.
Wei-Xin Ren  Sheng-En Fang  Ben Young 《Thin》2006,44(3):314-320
The channel failures due to combined bending and web crippling may occur at the highly concentrated interior loading when there is no load stiffener in cold-formed thin-walled steel beams. This paper presents accurate finite element models to predict the behavior and ultimate strengths of cold-formed steel channels subjected to pure bending as well as combined bending and web crippling. Both geometric and material nonlinearities are considered in the finite element analysis. The nonlinear finite element models are verified against experimental results of cold-formed steel channels subjected to pure bending as well as combined bending and web crippling. The finite element analytical results show a good agreement with the experimental results in terms of the ultimate loads and moments, failure modes and web load-deformation curves thus validating the accuracy of the finite element models. The verified finite element models are then used for an extensive parametric study of different channel dimensions. The channel strengths predicted from the parametric study are compared with the design strengths calculated from the North American Specification for cold-formed steel structures. It is shown that the design rules in the North American Specification are generally conservative for channel sections with unstiffened flanges having the web slenderness ranged from 7.8 to 108.5 subjected to combined bending and web crippling. It is demonstrated that the nonlinear finite element analysis by using the verified finite element models against test results is an effective way to predict the ultimate strengths of cold-formed thin-walled steel members.  相似文献   

20.
The paper summarises research on high strength stainless steel tubular structures conducted at the University of Hong Kong, and the Hong Kong University of Science and Technology. Square and rectangular hollow sections were investigated. The test specimens were cold-rolled from high strength austenitic and duplex stainless steel sheets. The material properties of the test specimens were determined by tensile coupon tests at normal room and elevated temperatures. The initial geometric imperfection and residual stress of the specimens were measured. The experimental and numerical investigation focused on the design and behaviour of cold-formed high strength stainless steel structural members. The results were compared with design strengths calculated using the American, Australian/New Zealand and European specifications for cold-formed stainless steel structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号