首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Numerical study on deformation and failure of reinforced sand   总被引:1,自引:0,他引:1  
In order to investigate the deformation and failure of reinforced sand, and the reinforcing mechanism of flexible and rigid reinforcement, a set of plane strain compression tests of dense Toyoura reinforced sand with planar reinforcement of a wide range of stiffness were analysed by a nonlinear finite element method. The analysis was incorporated into an energy-based elasto-plastic constitutive model for sand to develop a stress path-independent workhardening parameter based on the modified plastic strain energy concept. Numerical results indicate that the global stress-strain relations of sand specimens are reinforced by using relatively flexible and rigid reinforcement, and an unreinforced sand specimen can be reasonably simulated by the current finite element method. It is also found that the reinforcing mechanism and progressive failure with a development of shear bands in reinforced sand can be reasonably examined by the finite element method.  相似文献   

2.
For material nonlinear problem,elements derived with the flexibility-based method are more accurate than classical elements derived with the stiffness-based method. A review of the current state of the art of the flexibility-based finite element method is provided to enhance the robustness of structure analysis. The research on beam-column elements is the mainstream in the research on flexibility-based finite element method at present. The original development of flexibility-based finite element method is reviewed, and the further development of this method is then presented in several specific aspects, such as geometrically nonlinear analysis and dynamic analysis. The further research needed to be carried out in the future is finally discussed.  相似文献   

3.
To determine the ultimate bearing capacity of foundations on sloping ground surface in practice, energy dissipation method was used to formulate the bearing capacity as programming problem, and full-scale model experiments were investigated to analyze the performance of the soil slopes loaded by a strip footing in laboratory. The soil failure is governed by a linear Mohr-Coulomb yield criterion, and soil deformation follows an associated flow rule. Based on the energy dissipation method of plastic mechanics, a multi-wedge translational failure mechanism was employed to obtain the three bearing capacity factors related to cohesion, equivalent surcharge load and the unit gravity for various slope inclination angles. Numerical results were compared with those of the published solutions using finite element method and those of model experiments. The bearing capacity factors were presented in the form of design charts for practical use in engineering. The results show that limit analysis solutions approximate to those of model tests, and that the energy dissipation method is effective to estimate bearing capacity of soil slope.  相似文献   

4.
A nonlinear finite element method is applied to observe how inclusion shape influence the thermal response of a ceramic-metal functionally graded material (FGM). The elastic and plastic behaviors of the layers which are two-phase isotropic composites consisting of randomly oriented elastic spheroidal inclusions and a ductile matrix are predicted by a mean field method. The prediction results show that inclusion shape has remarkable influence on the overall behavior of the composite. The consequences of the thermal response analysis of the FGM are that the response is dependent on inclusion shape and its composition profile cooperatively and that the plastic behavior of each layer should be taken into account in optimum design of a ceramic-metal FGM.  相似文献   

5.
Slope stability is of critical importance in the process of surface-underground mining combination. The influence of underground mining on pit slope stability was mainly discussed, and the self-stabilization of underground stopes was also studied. The random finite element method was used to analyze the probability of the rock mass stability degree of both pit slopes and underground stopes. Meanwhile, 3D elasto-plastic finite element method was used to research into the stress, strain and rock mass failure resulting from mining. The results of numerical simulation indicate that the mining of the underground test stope has certain influence on the stability of the pit slope, but the influence is not great. The safety factor of pit slope is decreased by 0.06, and the failure probability of the pit slope is increased by 1.84%. In addition, the strata yielding zone exists around the underground test stope. The results basically conform to the information coming from the field monitoring.  相似文献   

6.
In order to investigate the process of incremental sheet forming (ISF) through both experimental and numerical approaches, a three-dimensional elasto-plastic finite element model (FEM) was developed to simulate the process and the simulated results were compared with those of experiment. The results of numerical simulations, such as the strain history and distribution, the stress state and distribution, sheet thickness distribution, etc, were discussed in details, and the influences of process parameters on these results were also analyzed. The simulated results of the radial strain and the thickness distribution are in good agreement with experimental results. The simulations reveal that the deformation is localized around the tool and constantly remains close to a plane strain state. With decreasing depth step, increasing tool diameter and wall inclination angle, the axial stress reduces, leading to less thinning and more homogeneous plastic strain and thickness distribution. During ISF, the plastic strain increases stepwise under the action of the tool. Each increase in plastic strain is accompanied by hydrostatic pressure, which explains why obtainable deformation using ISF exceeds the forming limits of conventional sheet forming.  相似文献   

7.
An indentation method for determining the plastic mechanical equation of state (PES) was studied. The constant loading rate and constant loading rate/load indentation tests were carried out. The method for determining the work-hardening coefficient and the strain rate sensitivity coefficient of PES were discussed in detail. 304 stainless steel hot-treated at 1100℃ was used to verify the method. The work-hardening coefficient and strain rate sensitivity coefficient of 304 stainless steel were respectively determined as 0.30 and 0.015. These values are very close to those achieved by tensile tests. From the establishment of the PES of 304 stainless steel it is shown that the PES obtained by the indentation method is easier than that by the tensile test.  相似文献   

8.
This paper establishes an anisotropic plastic material model to analyze the elasto-plastic behavior of masonry in plane stress state.Being an anisotropic material,masonry has different constitutive relation and fracture energies along each orthotropic axes.Considering the unique material properties of masonry,a new yield criterion for masonry is proposed combining the Hill’s yield criterion and the Rankine’s yield criterion.The new yield criterion not only introduces compression friction coefficient of shear but also considers yield functions for independent stress state along two material axes of tension.To solve the involved nonlinear equations in numerical analysis,several nonlinear methods are implemented,including Newton-Raphson method for nonlinear equations and Implicit Euler backward mapping algorithm to update stresses.To verify the proposed material model of masonry,a series of tests are operated.The simulation results show that the new developed material model implements successfully.Compared with isotropic material model,the proposed model performs better in elasto-plastic analysis of masonry in plane stress state.The proposed anisotropic model is capable of simulating elasto-plastic behavior of masonry and can be used in related applications.  相似文献   

9.
The 3-D thermo-mechanical coupled elasto-plastic finite element method (FEM) was used for the simulation of the twopass continuous hot rolling process of 60SiMnA spring steel bars and rods using MARC/AutoForge3.1 software. The simulated resuits visualize the metal flow and the dynamic evolutions of the strain, stress and temperature during the continuous hot rolling, especially inside the work-piece. It is shown that the non-uniform distributions of the strain, stress and temperature on the longitudinal and transverse sections are a distinct characteristic of the continuous hot rolling, which can be used as basic data for improving the tool design, predicting and controlling the micro-structural evolution of a bar and rod.  相似文献   

10.
节理岩体弹塑性动态有限元分析   总被引:1,自引:0,他引:1  
 Aim To study the elastic-plastic dynamical constitutive relations about a jointed rock mass under explosion load and its computer simulation. Methods Stress history is taken into account and stresses will follow changes in time during a period of explosion load. According to the principle of static force balance, the corresponding nodal concentrated force is calculated and the nodal displacement is counted. The elastic-plastic dynamic finite element equations are thus obtained. Results A finite element method is given for a jointed rock mass under explosion load. Conclusion The problem of large plastic deformation for jointed rock mass on blasting was efficiently resolved through dynamic finite element analysis and the range of damages by blasting simulated, and this pushes forward the problem to engineering practice.  相似文献   

11.
Employing an ideal elasto-plastic model, the typically used strength reduction method reduced the strength of all soil elements of a slope. Therefore, this method was called the global strength reduction method (GSRM). However, the deformation field obtained by GSRM could not reflect the real deformation of a slope when the slope became unstable. For most slopes, failure occurs once the strength of some regional soil is sufficiently weakened; thus, the local strength reduction method (LSRM) was proposed to analyze slope stability. In contrast with GSRM, LSRM only reduces the strength of local soil, while the strength of other soil remains unchanged. Therefore, deformation by LSRM is more reasonable than that by GSRM. In addition, the accuracy of the slope's deformation depends on the constitutive model to a large degree, and the variable-modulus elasto-plastic model was thus adopted. This constitutive model was an improvement of the Duncan~Chang model, which modified soil's deformation modulus according to stress level, and it thus better reflected the plastic feature of soil. Most importantly, the parameters of the variable-modulus elasto-plastic model could be determined through in-situ tests, and parameters determination by plate loading test and pressuremeter test were introduced. Therefore, it is easy to put this model into practice. Finally, LSRM and the variable-modulus elasto-plastic model were used to analyze Egongdai ancient landslide. Safety factor, deformation field, and optimal reinforcement measures for Egongdai ancient landslide were obtained based on the proposed method.  相似文献   

12.
A new double reduction method for slope stability analysis   总被引:1,自引:0,他引:1  
The core of strength reduction method (SRM) involves finding a critical strength curve that happens to make the slope globally fail and a definition of factor of safety (FOS). A new double reduction method, including a detailed calculation procedure and a definition of FOS for slope stability was developed based on the understanding of SRM. When constructing the new definition of FOS, efforts were made to make sure that it has concise physical meanings and fully reflects the shear strength of the slope. Two examples, slopes A and B with the slope angles of 63~ and 34~ respectively, were given to verify the method presented. It is found that, for these two slopes, the FOSs from original strength reduction method are respectively 1.5% and 38% higher than those from double reduction method. It is also found that the double reduction method predicts a deeper potential slide line and a larger slide mass. These results show that on one hand, the double reduction method is comparative to the traditional methods and is reasonable, and on the other hand, the original strength reduction method may overestimate the safety of a slope. The method presented is advised to be considered as an additional option in the practical slope stability evaluations although more useful experience is required.  相似文献   

13.
Recently, the radial point interpolation meshfree method has gained popularity owing to its advantages in large deformation and discontinuity problems, however, the accuracy of this method depends on many factors and their influences are not fully investigated yet. In this work, three main factors, i.e., the shape parameters, the influence domain size, and the nodal distribution, on the accuracy of the radial point interpolation method (RPIM) are systematically studied and conclusive results are obtained. First, the effect of shape parameters (R, q) of the multi-quadric basis function on the accuracy of RPIM is examined via global search. A new interpolation error index, closely related to the accuracy of RPIM, is proposed. The distribution of various error indexes on the R-q plane shows that shape parameters q ∈ [1.2, 1.8] and R ∈ [0, 1.5] can give good results for general 3-D analysis. This recommended range of shape parameters is examined by multiple benchmark examples in 3D solid mechanics. Second, through numerical experiments, an average of 30-40 nodes in the influence domain of a Gauss point is recommended for 3-D solid mechanics. Third, it is observed that the distribution of nodes has significant effect on the accuracy of RPIM although it has little effect on the accuracy of interpolation. Nodal distributions with better uniformity give better results. Furthermore, how the influence domain size and nodal distribution affect the selection of shape parameters and how the nodal distribution affects the choice of influence domain size are also discussed.  相似文献   

14.
In the current work, to predict and improve the formability of deep drawing process for steel plate cold rolled commercial grade (SPCC) sheets, three parameters including the blanking force, the die and punch comer radius were considered. The experimental plan according to Taguchi's orthogonal array was coupled with the finite element method (FEM) simulations. Firstly, the data from the test of stress-strain and forming limit curves were used as input into ABAQUS/Explicit finite element code to predict the failure occurrence of deep drawing process. The three parameters were then validated to establish their effects on the press formability. The optimum case found via simulation was finally confirmed through an experiment. In order to obtain the complex curve profile of cup shape after deep drawing, the anisotropic behavior of earring phenomenon was modeled and implemented into FEM. After such phenomenon was correctly predicted, an error metric compared with design curve was then measured.  相似文献   

15.
A control algorithm for improving vehicle handling was proposed by applying right angle to the steering wheel, based on the nonlinear adaptive optimal control (NAOC). A nonlinear 4-DOF model was initially developed, then it was simplified to a 2-DOF model with reasonable assumptions to design observer and optimal controllers. Then a simplified model was developed for steering system. The numerical simulations were carried out using vehicle parameters for standard maneuvers in dry and wet road conditions. Moreover, the hardware in the loop method was implemented to prove the controller ability in realistic conditions. Simulation results obviously show the effectiveness of NAOC on vehicle handling and reveal that the proposed controller can significantly improve vehicle handling during severe maneuvers.  相似文献   

16.
A systematic method was proposed to estimate the occurrence probability of defective piles (OPDP) from a site according to quality assurance inspection. The OPDP was firstly suggested as the criterion to weight the performance of a pile foundation. Its prior distribution and updating distribution were deduced to follow Beta distributions. To calibrate the OPDP, a dynamic estimation model was established according to the relationships between prior mean and variance and updating mean and variance. Finally, a reliability-control method dealing with uncertainties arising from quality assurance inspection was formalized to judge whether all the bored piles from a site can be accepted. It is exemplified that the OPDP can be substantially improved when more definite prior information and sampling formation become available. For the example studied herein, the Bayesian estimator of updating variance for OPDP is reduced from 0.0037 to 0.0014 for the first inspection, from 0.0014 to 0.0009 for the second inspection, and with less uncertainty by incorporating experience information.  相似文献   

17.
The objective of this work is to develop a novel methodology for determining real resistivity of conductive asphalt concrete based on two-electrode method.Due to an influence of contact resistance,the measured resistivity is always not equal to the real resistivity.To determine the real resistivity,a linear relationship of the measured resistivity,contact resistance and the real resistivity was established.Then experiments for six specimens with varying graphite contents were designed and performed to validate the formulation.Results of experiments demonstrate that the slope of the line represents contact resistance,and the intercept indicates the real resistivity.The effects of graphite content on contact resistance and real resistivity are also revealed.Finally,results show that the influence of contact resistance on accuracy of resisitvity measurement becomes more serious if graphite content is beyond 3%.Hence,it is the time to choose this novel methodology to determine the real resistivity of asphalt concrete by taking account of contact resistance.  相似文献   

18.
Methods that can efficiently model the effects of rock joints on rock mass behavior can be beneficial in rock engineering. The suitability of equivalent rock mass (ERM) technique based upon particle methods is investigated. The ERM methodology is first validated by comparing calculated and experimental data of lab triaxial compression test on a set of cylindrical rock mass samples, each containing a single joint oriented in various dip angles. The simulated results are then used to study the stress-strain nonlinearity and failure mechanism as a function of the joint dip angle and confining stress. The anisotropy and size effects are also investigated by using multi-scale cubic ERM models subjected to triaxial compression test. The deformation and failure behavior are found to be influenced by joint degradation, the micro-crack formation in the intact rock, the interaction between two joints, and the interactions of micro-cracks and joints.  相似文献   

19.
It is a complicated nonlinear controlling problem to conduct a two-dimensional trajectory correction of rockets.By establishing the aerodynamic correction force mathematical model of rockets on nose cone swinging,the linear control is realized by the dynamic inverse nonlinear controlling theory and the three-time-scale separation method.The control ability and the simulation results are also tested and verified.The results show that the output responses of system track the expected curve well and the error is controlled in a given margin.The maximum correction is about ±314 m in the lengthwise direction and ±1 212 m in the crosswise direction from the moment of 5 s to the drop-point time when the angle of fire is 55°.Thus,based on the dynamic inverse control of feedback linearization,the trajectory correction capability of nose cone swinging can satisfy the requirements of two-dimensional ballistic correction,and the validity and effectiveness of the method are proved.  相似文献   

20.
Phosphorous slag (PHS), ground granulated blast-furnace slag (GGBS) and fly ash (FA) were used as replacements of Portland cement to modify the microstruc~xe of recycled aggregate concrete (RAC). A new manufacturing method named "W3T4" was proposed to improve the performances of interracial transition zone (ITZ) between recycled aggregate and mortar. The mechanical properties and the durability of RAC were tested, which show that this new manufacturing method improves the properties of RAC, and the GGBS with finest size makes a great contribution to the performance of RAC due to its better filling effect and much earlier pozzolanic reaction. Combined with GGBS, the effects of PHS on the retardation of setting time can be alleviated and the synergistic effect helps to make a more compact RAC. For the RAC with 25% of the recycled aggregate (RA) replacement and 10% PHS + 10% GGBS additives, the compressive strength increases by 25.4%, but the permeability decreases by 64.3% with respect to the reference concrete made with nature aggregates. The micro-mechanisms of these improvements were investigated by the scanning electron microscope (SEM). The SEM images show that the new manufacturing method, adding superfine pozzolanic powders and super-plasticizer benefits, makes a much denser ITZ in RAC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号