首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
The size of bubbles created in the flotation process is of great importance to the efficiency of the mineral separation achieved. Meanwhile, it is believed that frother transport between phases is perhaps the most important reason for the interactive nature of the phenomena occurring in the bulk and froth phases in flotation, as frother adsorbed in the surface of rising bubbles is removed from the bulk phase and then released into the froth as a fraction of the bubbles burst. This causes the increased concentration in the froth compared to the bulk concentration, named as frother partitioning. Partitioning reflects the adsorption of frother on bubbles and how to influence bubble size is not known. There currently exists no such a topic aiming to link these two key parameters. To fill this vacancy, the correspondence between bubble size and frother partitioning was examined. Bubble size was measured by sampling-for-imaging (SFI) technique. Using total organic carbon (TOC) analysis to measure the frother partitioning between froth and bulk phases was determined. Measurements have shown, with no exceptions including four different frothers, higher frother concentration is in the bulk than in the froth. The results also show strong partitioning giving an increase in bubble size which implies there is a compelling relationship between these two, represented byCFroth/CBulk andD32. TheCFroth/CBulk andD32 curves show similar exponential decay relationships as a function of added frother in the system, strongly suggesting that the frother concentration gradient between the bulk solution and the bubble interface is the driving force contributing to bubble size reduction.  相似文献   

2.
Froth flotation is a widely used process of particle separation exploiting differences in surface properties. It is important to point out that overall flotation performance(grade and recovery) is a consequence of the quality and quantity of the solid particles collected from the pulp phase, transported into the froth phase, and surviving as bubble-particle aggregates into the overflow. This work will focus on studying these phenomena and will incorporate the effects of particle hydrophobicities in the 3-phase system. Solids are classed as either hydrophilic non-sulphide gangue(e.g. silica, talc), hydrophilic sulphide(e.g. pyrite), or hydrophobic sulphide(e.g. sphalerite). Talc is a surface-active species of gangue that has been shown to behave differently from silica(frother adsorbs on the surface of talc particles). Both are common components of ores and will be studied in detail. The focus of this work is to investigate the role of solids on pulp hydrodynamics, froth bubble coalescence intensity, water overflow rate with solids present, and in particular, the interactions between solids, frother and gas on the gas dispersion parameters. The results show that in the pulp zone there is no effect of solids on bubble size and gas holdup; in the froth zone, although hydrophilic particles solely do not effect on the water overflow rate, hydrophobic particles produce higher intensity of rates on water overflow and bubble coalescence, and many be attributed to the water reattachment.  相似文献   

3.
A special experiment setup was designed to observe the interaction between bubbles and particle in flotation cell and to analyze the bubble characteristics such as bubble size, distribution and bubble-loading efficiency. Bubbles in water-gas system and three-phase system were measured. The results indicate that with the current setup the bubbles as small as 10μm can be easily distinguished. The average size of the bubbles generated under the given conditions in two-phase system is 410μm at frother concentration of 0. 004%, which is in good correspondence with the results of other works. The effect of frother on bubble size was probed. Increasing frother concentration from 0 to 0. 004% causes a reduction of bubble size from 700 to 400μm. The bubble loading efficiency was reported. The result indicates that the fine particle is more easily entrapped than the coarse particle. Some factors, which have effect on measurement accuracy were discussed. The aeration speed has a significant effect on the accuracy of results, if it surpasses 30 mL/s, and the image becomes unclear due to the entrapment of fine particle. Another factor, which can affect observing results, is the sampling position. At a wrong sampling position, the images become unclear.  相似文献   

4.
Effect of air bubble size on cavitation erosion reduction   总被引:2,自引:0,他引:2  
Over the past 60 years, the air concentration in water has been considered as a control index of cavitation erosion reduction and widely used in the designs of hydraulic structures. However, the mechanism of air entrainment against cavitation erosion has been paid good attention to. In the present work, the effect of air bubble size on cavitation erosion reduction was experimentally investigated. A device with micron-scale orifice diameters(10, 20 and 50 μm in size) was specially designed to introduce air bubbles into water. The experiments about the effect of air bubble size were conducted by means of a vibratory apparatus, including the behavior of formation and movement for single air bubble, the characteristics of cavitation erosion reduction at different air entrainment conditions. The findings demonstrate that high air concentration has significant effects on cavitation erosion reduction.But, a notable problem was that the size of air bubbles is of outstanding effect on cavitation erosion reduction. Small air bubbles support to alleviate cavitation erosion, even at same air concentration.  相似文献   

5.
This work aims to provide a relationship of how the key operational variables of frother type and impeller speed affect the size of bubble (D32). The study was performed using pilot-scale equipment (0.8 m^3) that is up to two orders of magnitude larger than equipment used for studies performed to date by others, and incorporated the key process variables of frother type and impeller speed. The results show that each frother family exhibits a unique CCC95-HLB relationship dependent on n (number of C-atoms in alkyl group) and m (number of propylene oxide group). Empirical models were developed to predict CCC95 from HLB associated with other two parameters a and ft. The impeller speed-bubble size tests show that D32 is unaffected by increased impeller tip speed across the range of 4.6 to 9.2 m/s (representing the industrial operating range), although D32 starts to increase below 4.6 m/s. The finding is valid for both coalescing and non-coalescing conditions. The results suggest that the bubble size and bubble size distribution (BSD) being created do not change with increasing impeller speed in the quiescent zone of the flotation.  相似文献   

6.
Bubble surface area flux(S_b) is one of the main design parameter in flotation column that typically employed to describe the gas dispersion properties, and it has a strong correlation with the flotation rate constant. There is a limited information available in the literature regarding the effect of particle type,density, wettability and concentration on Sb. In this paper, computational fluid dynamics(CFD) simulations are performed to study the gas–liquid–solid three-phase flow dynamics in flotation column by employing the Eulerian–Eulerian formulation with k-e turbulence model. The model is developed by writing Fortran subroutine and incorporating then into the commercial CFD code AVL FIRE, v.2014.This paper studies the effects of superficial gas velocities and particle type, density, wettability and concentration on Sband bubble concentration in the flotation column. The model has been validated against published experimental data. It was found that the CFD model was able to predict, where the response variable as indicated by R-Square value of 0.98. These results suggest that the developed CFD model is reasonable to describe the flotation column reactor. From the CFD results, it is also found that Sb decreased with increasing solid concentration and hydrophobicity, but increased with increasing superficial gas velocity. For example, approximately 28% reduction in the surface area flux is observed when coal concentration is increased from 0 to 10%, by volume. While for the same solid concentration and gas flow rate, the bubble surface area flux is approximately increased by 7% in the presences of sphalerite.A possible explanation for this might be that increasing solid concentration and hydrophobicity promotes the bubble coalescence rate leading to the increase in bubble size. Also, it was found that the bubble concentration would decrease with addition of hydrophobic particle(i.e., coal). For instance, under the same operating conditions, approximately 23% reduction in the bubble concentration is predicted when the system was working with hydrophobic particles. The results presented are useful for understanding flow dynamics of three-phase system and provide a basis for further development of CFD model for flotation column.  相似文献   

7.
Tundish is the last refractory vessel in the steelmaking process. The fluid flow phenomena in tundish have a strong influence on the separation of non-metallic inclusions. The dispersive bubble wall (DBW) is a new method in tundish metallurgy. A water model of a multi-strand tundish has been set up based on the Froude number and Reynold number similarity criteria. The effect of DBW+weir on the flow pattern has been studied. The results show that this new structure of DBW+weir is beneficial not only to uniform the temperature among different submerge entry nozzles but also to separate non-metallic inclusions from liquid steel. The DBW can capture the particles of non-metallic inclusions and make them float up to the surface.  相似文献   

8.
Numerical simulation on inclusion transport in continuous casting mold   总被引:3,自引:0,他引:3  
Turbulent flow, the transpor't of inclusions and bubbles, and inclusion removal by fluid flow, transport and by bubble flotation in the strand of the continuous slab caster are investigated using computational models, and validated through comparison with plant measurements of inclusions. Steady 3-D flow of steel in the liquid pool in the mold and upper strand is simulated with a finitedifference computational model using the standard k-εturbulence rondel. Trajectories of inclusions and bubhles tire calculated by integrating each local velocity, considering its drag and buoyancy forces, A "random walk" model is used to incorporate the effect of turbulent fluctuations on the particle motion. The attachment probability of inclusions on a bubble surface is investigated based on fundamental fluid flow simulations, incorporating the turbulent inclusion trajectory and sliding time of each individual inclusion along the bubble surface as a function of particle and bubble size. The chunge in inclusion distribution due to removal by bubble transport in the mold is calculated based on the computed attachment probability of inclusions on each bubble and the computed path length of the bubbles. The results indicate that 6%-10% inclusions are removed by fluid flow transport. 10% by bubble flotation, and 4% by entrapment to the submerged entry nozzle (SEN) walls. Smaller bubbles and larger inclusions have larger attachment probabilities. Smaller bubbles are more efficient for inclusion removal by bubble flotation, so Inng as they are not entrapped in the solidifying shell A larger gas flow rate favors inclusion removal by bubble flotation. The optimum bubble size should be 2-4mm.  相似文献   

9.
Coal is the world's most abundant fossil fuel.Coal froth flotation is a widely used cleaning process to separate coal from mineral impurities.Flotation of coarse coal particles,ultrafine coal particles and oxidized coal particles is well known to be difficult and complex.In this paper,the nanobubbles' effects on the flotation of the varying particle size,particle density and floatability coal samples were evaluated using a bank of pilot scale flotation cells,a laboratory scale and a pilot scale specially designed flotation column.The parameters evaluated during this study include the flow rate ratio between the nanobubble generator and the conventional size bubble generator,the superficial air velocity,collector dosage,frother concentration,flotation feed rate,feed solids concentration,feed particle size,and the superficial wash water flow rate,etc.The results show that the use of nanobubbles in a bank of mechanical cells flotation and column flotation increased the flotation recovery by 8%~27% at a given product grade.Nanobubbles increased the flotation rate constants of 600~355,355~180,180~75,and 75~0 microns size coal particles by 98.0%,98.4%,50.0% and 41.6%,respectively.The separation selectivity index was increased by up to 34%,depending on the flotation feed characteristics and the flotation conditions.  相似文献   

10.
The specific results of the work investigating the effect of gas density and water temperature on bubble size were present.These were surrogate variables designed to investigate the effect of viscosity(varying water temperature) and altitude(varying gas density).The results show that there is a measurable but relatively small effect of gas density on bubble size.The D32 is revealed to increase proportionally as(ρ0/ρg)0.132.The projected impact on flotation kinetics at 4500 m versus sea level is small,of the order of 0.5% recovery loss for a bank of eight flotation cells.The effect of water temperature(4-40 °C) on bubble size is more significant than gas density.The relationship correlates with water viscosity values quite closely.A finding that D32 increases proportionally as(μ/μ20)0.776 highlights the importance of accounting for viscosity effects if,for example,large process temperature fluctuations or deviation from design/test conditions are expected.  相似文献   

11.
Nanostructured Fe-doped titanium dioxide was synthesized from titanium containing electric furnace molten slag (TCEFMS) by using an alkali fusion, followed by a hydrolyzation-acidolysis-cMcination route. The effects of Mkali/slag mass ratio, calcinating temperature, calcinating time, and water/slag mass ratio on the extraction efficiency and purity of products were systematically studied in this paper. It is indicated that the best extraction efficiency of nanostructured Fe- doped titanium dioxide is 99.35%, when the molten slag is calcinated at 700℃ for 1 h with the mass ratio of alkali/molten slag of 1.5:1. The influence of alkali/slag mass ratio on the photocatalytic activity of final products was evaluated by the photodegradation of methyl blue under visible light irradiation. A maximum photodegradation efficiency of 88.12% over 30 min was achieved under the optimum conditions.  相似文献   

12.
This article reports the effect of ageing on the microstructure, martensitic transformation, magnetic properties, and mechanical properties of Ni51FelsGa27Ti4 shape memory alloy. There are five specimens of this alloy aged at 573 up to 973 K for 3 h per each. This range of ageing temperature greatly affects the microstructure of the alloy. As the ageing temperature increased from 573 up to 973 K, the microstructure of Ni51FelsGa27Ti4 alloy gradually changed from the entirely martensitic matrix at 573 K to the fully austenitic microstructure at 973 K. The volume fraction of precipi- tated Ni3Ti particles increased with the ageing temperature increasing from 573 to 773 K. Further increasing the ageing temperature to 973 K decreased the content of Ni3Ti in the microstructure. The martensitic transformation tempera- ture was decreased steadily by increasing the ageing temperature. The magnetization saturation, remnant magnetization, and coercivity increased with the ageing temperature increasing up to 773 K. A further increase in ageing temperature decreased these raagnetic properties. Moreover, the hardness values were gradually increased at first by increasing the ageing temperature to 773 K, and then dramatically decreased to the lowest value at 973 K.  相似文献   

13.
The microstructure and mechanical properties of A1-4.5wt% Cu Mloy reinforced with different volume fractions (1.5vo1%, 3vo1%, and 5vo1%) of alumina nanoparticles, fabricated using stir casting method, were investigated. CMculated amounts of alumina nanoparticles (about ~50 nm in size) were ball-milled with aluminum powders in a planetary ball mill for 5 h, and then the packets of milled powders were incorporated into molten Al-4.5wt% Cu alloy. Microstructural studies of the nanocomposites reveal a uniform distribution of alumina nanoparticles in the A1-4.5wt% Cu matrix. The results indicate an outstanding improvement in compression strength and hardness due to the effect of nanoparticle addition. The aging behavior of the composite is also evaluated, indicating that the addition of alumina nanoparticles can accelerate the aging process of the Mloy, resulting in higher peak hardness values.  相似文献   

14.
To use the potential heat of molten blast furnace slag completely, a CaO-Al2O3-SiO2 system glass (MSG) was prepared from the molten industrial slag. The corresponding method proposed in this study utilized both slag and its potential heat, improving the production rate and avoiding the environmental pollution. Using appropriate techniques, an MSG with uniform color and superior performances was produced. Based on the experimental results and phase diagram, the chemical composition of MSG by mass is obtained as follows:CaO 27%-33%, SiO2 42%-51%, Al2O3 11%-14%, MgO 6%-8%, and Na2O+K2O 1%-4%. Thermodynamic processes of MSG preparation were analyzed, and the phases and microstructures of MSG were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that alkali metal oxides serve as the fluxes, calcium oxide serves as the stabilizer, and alumina reinforces the Si-O network. XRD and SEM analyses show that, the prepared MSG displays the glass-feature patterns, the melting process is more complete, and the melt viscosity is lowered with an increase in calcium oxide content;however, a continuous increase in slag content induces the crystalli-zation of glass, leading to the formation of glass subphase. The optimum content of molten slag in MSG is 67.37wt%. With respect to bend-ing strength and acid/alkali resistance, the performance of MSG is better than that of ordinary marble.  相似文献   

15.
S.  O.  Bamaga  M.  Md.  Tahir  T.  C.  Tan S. Mohammad  N.  Yahya  A.  L.  Saleh M. Mustaffar  M.  H.  Osman  A.  B.  A.  Rahman 《中南工业大学学报(英文版)》2013,(12):3689-3696
Cold-formed steel structures are steel structure products constructed from sheets or coils using cold rolling, press brake or bending brake method. These structures are extensively employed in building construction industry due to their light mass, ductility by economic cold forming operations, favorable strength-to-mass ratio and other factors. The utilization of cold formed steel sections with concrete as composite can hugely reduce the construction cost. However, the use of cold formed steel members in composite concrete beams has been very limited. A comprehensive review of developments in composite beam with cold formed steel sections was introduced. It was revealed that employing cold-formed steel channel section to replace reinforcement bars in conventional reinforced concrete beam results in a significant cost reduction without reducing strength capacity. The use of composite beam consisting of cold-formed steel open or close box and filled concrete could also reduce construction cost. Lighter composite girder for bridges with cold-formed steel of U section was introduced. Moreover, types of shear connectors to provide composite action between cold-formed steel beam and concrete slab were presented. However, further studies to investigate the effects of metal decking on the behavior of composite beam with cold-formed steel section and introduction of ductile shear connectors were recommended.  相似文献   

16.
With a focus on an industrial multivariable system, two subsystems including the flow and the level outputs are analysed and controlled, which have applicability in both real and academic environments. In such a case, at first, each subsystem is distinctively represented by its model, since the outcomes point out that the chosen models have the same behavior as corresponding ones. Then, the industrial multivariable system and its presentation are achieved in line with the integration of these subsystems, since the interaction between them can not actually be ignored. To analyze the interaction presented, the Gershgorin bands need to be acquired, where the results are used to modify the system parameters to appropriate values. Subsequently, in the view of modeling results, the control concept in two different techniques including sequential loop closing control (SLCC) scheme and diagonal dominance control (DDC) schemes is proposed to implement on the system through the Profibus network, as long as the OPC (OLE for process control) server is utilized to communicate between the control schemes presented and the multivariable system. The real test scenarios are carried out and the corresponding outcomes in their present forms are acquired. In the same way, the proposed control schemes results are compared with each other, where the real consequences verify the validity of them in the field of the presented industrial multivariable system control.  相似文献   

17.
The growth rule of the interfacial intermetallic compound (IMC) and the degradation of shear strength of Sn-0.SAg-0.5Cu-2.0Bi-0.05Ni (SACBN)/Cu solder joints were investigated in comparison with Sn-3.0Ag-0.5Cu (SAC305)/ Cu solder joints aging at 373, 403, and 438 K. The results show that (Cul-x,Nix)6Sn5 phase forms between the SACBN solder and Cu substrate during soldering. The interracial IMC thickens constantly with the aging time increasing, and the higher the aging temperature, the faster the IMC layer grows. Compared with the SAC305/Cu couple, the SACBN/Cu couple exhibits a lower layer growth coefficient. The activation energies of IMC growth for SACBN/Cu and SAC305/Cu couples are 111.70 and 82.35 kJ/mol, respectively. In general, the shear strength of aged solder joints declines continuously. However, SACBN/Cu solder joints exhibit a better shear strength than SAC305/Cu solder joints.  相似文献   

18.
This study described the structural, dielectric, and piezoelectric behavior of Pb1-xSrx[(Zr0.52Ti0.48)0.95(Mn1/3Nb2/3)0.05]O3 ceramics (PSZT-PMN, x=0, 0.025, 0.050, and 0.075), prepared by a semi-wet route. X-ray diffraction, dielectric, and piezoelectric investigations were carried out to analyze the crystal structure. The relative dielectric constant and dielectric loss were both calculated as the functions of temperature. The room-temperature dielectric constant reaches a maximum for a Sr2+-modified PZT-PMN ceramic with an x value of 0.050, which corresponds to the morphotropic phase boundary (MPB). Raman spectroscopy studies also confirm the existence of this MPB for x=0.050. The piezoelectric strain coefficients (d33) value shows a maximum response for this composition. In addition, the phase transition temperature decreases significantly when the Sr2+concentration increases in the PZT-PMN ceramics.  相似文献   

19.
The effect of chloride ion concentration, pH value, and grain size on the pitting corrosion resistance of a new ferritic stainless steel with 15wt% Cr was investigated using the anodic polarization method. The semiconducting properties of passive films with different chloride ion concentrations were performed using capacitance measurement and Mott-Schottky analysis methods. The aging precipitation and intergranular corrosion behavior were evaluated at 400- 900℃. It is found that the pitting potential decreases when the grain size increases. With the increase in chloride ion concentration, the doping density and the flat-bland potential increase but the thickness of the space charge layer decreases. The pitting corrosion resistance increases rapidly with the decrease in pH value. Precipitants is identified as Nb(C,N) and NbC, rather than Cr-carbide. The intergranular corrosion is attributed to the synergistic effects of Nb(C,N) and NbC precipitates and Cr segregation adjacent to the precipitates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号