首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We have integrated a high-/spl kappa/ LaAlO/sub 3/ dielectric into low-temperature poly-Si (LTPS) thin-film transistors (TFTs). Good TFT performance was achieved-such as a high drive current, low threshold voltage and subthreshold slope, as well as an excellent on/off current ratio and high gate-dielectric breakdown field. This was achieved without hydrogen passivation or special crystallization steps. The good performance is related to the high gate capacitance density and small equivalent-oxide thickness provided by the high-/spl kappa/ dielectric.  相似文献   

2.
A new parameter extraction technique has been outlined for high-/spl kappa/ gate dielectrics that directly yields values of the dielectric capacitance C/sub di/, the accumulation layer surface potential quotient, /spl beta//sub acc/, the flat-band voltage, the surface potential /spl phi//sub s/, the dielectric voltage, the channel doping density and the interface charge density at flat-band. The parallel capacitance, C/sub p/(=C/sub sc/+C/sub it/), was found to be an exponential function of /spl phi//sub s/ in the strong accumulation regime, for seven different high-/spl kappa/ gate dielectrics. The slope of the experimental lnC/sub p/(/spl phi//sub s/) plot, i.e., |/spl beta//sub acc/|, was found to depend strongly on the physical properties of the high-/spl kappa/ dielectric, i.e., was inversely proportional to [(/spl phi//sub b/m/sup *//m)/sup 1/2/K/C/sub di/], where /spl phi//sub b/ is the band offset, and m/sup */ is the effective tunneling mass. Extraction of /spl beta//sub acc/ represented an experimental carrier confinement index for the accumulation layer and an experimental gate-dielectric direct-tunneling current index. /spl beta//sub acc/ may also be an effective tool for monitoring the effects of post-deposition annealing/processing.  相似文献   

3.
In this letter, a novel self-aligned offset-gated Poly-Si thin-film transistor (TFT) using high-/spl kappa/ dielectric Hafnium oxide (HfO/sub 2/) spacers is proposed and demonstrated. The HfO/sub 2/ film is deposited by magnetron sputter deposition, and the HfO/sub 2/ spacers are formed by reactive ion etching. The permittivity of the deposited HfO/sub 2/ is approximately 20. Experimental results show that with the high vertical field induced underneath the high-/spl kappa/ spacers, an inversion layer is formed, and it effectively increases the on-state current while still maintaining a low leakage current in the off-state, compared to the conventional lightly doped drain or oxide spacer TFTs. The on-state current in the offset-gated Poly-Si TFT using the HfO/sub 2/ spacers is approximately two times higher than that of the conventional oxide spacer TFT.  相似文献   

4.
A thin active layer, a fully silicided source/drain (S/D), a modified Schottky-barrier, a high dielectric constant (high-/spl kappa/) gate dielectric, and a metal gate are integrated to realize high-performance thin-film transistors (TFTs). Devices with 0.1-/spl mu/m gate length were fabricated successfully. Low threshold voltage, low subthreshold swing, high transconductance, low S/D resistance, high on/off current ratio, and negligible threshold voltage rolloff are demonstrated. It is thus suggested for the first time that the short-channel modified Schottky-barrier TFT is a solution to carrier out three-dimension integrated circuits and system-on-panel.  相似文献   

5.
Building on a previously presented compact gate capacitance (C/sub g/-V/sub g/) model, a computationally efficient and accurate physically based compact model of gate substrate-injected tunneling current (I/sub g/-V/sub g/) is provided for both ultrathin SiO/sub 2/ and high-dielectric constant (high-/spl kappa/) gate stacks of equivalent oxide thickness (EOT) down to /spl sim/ 1 nm. Direct and Fowler-Nordheim tunneling from multiple discrete subbands in the strong inversion layer are addressed. Subband energies in the presence of wave function penetration into the gate dielectric, charge distributions among the subbands subject to Fermi-Dirac statistics, and the barrier potential are provided from the compact C/sub g/-V/sub g/ model. A modified version of the conventional Wentzel-Kramer-Brillouin approximation allows for the effects of the abrupt material interfaces and nonparabolicities in complex band structures of the individual dielectrics on the tunneling current. This compact model produces simulation results comparable to those obtained via computationally intense self-consistent Poisson-Schro/spl uml/dinger simulators with the same MOS devices structures and material parameters for 1-nm EOTs of SiO/sub 2/ and high-/spl kappa//SiO/sub 2/ gate stacks on (100) Si, respectively. Comparisons to experimental data for MOS devices with metal and polysilicon gates, ultrathin dielectrics of SiO/sub 2/, Si/sub 3/N/sub 4/, and high-/spl kappa/ (e.g., HfO/sub 2/) gate stacks on (100) Si with EOTs down to /spl sim/ 1-nm show excellent agreement.  相似文献   

6.
We report the impact of high work-function (/spl Phi//sub M/) metal gate and high-/spl kappa/ dielectrics on memory properties of NAND-type charge trap Flash (CTF) memory devices. In this paper, theoretical and experimental studies show that high /spl Phi//sub M/ gate and high permittivity (high-/spl kappa/) dielectrics play a key role in eliminating electron back tunneling though the blocking dielectric during the erase operation. Techniques to improve erase efficiency of CTF memory devices with a fixed metal gate by employing various chemicals and structures are introduced and those mechanisms are discussed. Though process optimization of high /spl Phi//sub M/ gate and high-/spl kappa/ materials, enhanced CTF device characteristics such as high speed, large memory window, and good reliability characteristics of the CTF devices are obtained.  相似文献   

7.
In this letter, we present the use of atomic layer deposition (ALD) for high-/spl kappa/ gate dielectric formation in Ge MOS devices. Different Ge surface cleaning methods prior to high-/spl kappa/ ALD have been evaluated together with the effects on inserting a Ge oxynitride (GeO/sub x/N/sub y/) interlayer between the high-/spl kappa/ layer and the Ge substrate. By incorporating a thin GeO/sub x/N/sub y/ interlayer, we have demonstrated excellent MOS capacitors with very small capacitance-voltage hysteresis and low gate leakage. Physical characterization has also been done to further investigate the quality of the oxynitride interlayer.  相似文献   

8.
Dielectric relaxation currents in SiO/sub 2//Al/sub 2/O/sub 3/ and SiO/sub 2//HfO/sub 2/ high-/spl kappa/ dielectric stacks are studied in this paper. We studied the thickness dependence, gate voltage polarity dependence and temperature dependence of the relaxation current in high-/spl kappa/ dielectric stacks. It is found that high-/spl kappa/ dielectric stacks show different characteristics than what is expected based on the dielectric material polarization model. By the drain current variation measurement in n-channel MOSFET, we confirm that electron trapping and detrapping in the high-/spl kappa/ dielectric stacks is the cause of the dielectric relaxation current. From substrate injection experiments, it is also concluded that the relaxation current is mainly due to the traps located near the SiO/sub 2//high-/spl kappa/ interface. As the electron trapping induces a serious threshold voltage shift problem, a low trap density at the SiO/sub 2//high-/spl kappa/ interface is a key requirement for high-/spl kappa/ dielectric stack application and reliability in MOS devices.  相似文献   

9.
The effects of high-pressure annealing on interface properties and charge trapping of nMOSFET with high-/spl kappa/ dielectric were investigated. Comparing with conventional forming gas (H/sub 2//Ar=4%/96%) annealed sample, nMOSFET sample annealed in high-pressure (5-20 atm), pure H/sub 2/ ambient at 400/spl deg/C shows 10%-15% improvements in linear drain current (I/sub d/) and maximum transconductance (g/sub m,max/). Interface trap density and charge trapping properties were characterized with charge pumping measurements and "single pulsed" I/sub d/-V/sub g/ measurements where reduced interface state density and improved charge trapping characteristics were observed after high pressure annealing. These results indicate that high pressure pure hydrogen annealing can be a crucial process for future high-/spl kappa/ gate dielectric applications.  相似文献   

10.
A novel intrinsic mobility extraction methodology for high-/spl kappa/ gate stacks that only requires a capacitance-voltage and pulsed I/sub d/-V/sub g/ measurement is demonstrated on SiO/sub 2/ and high-/spl kappa/ gate dielectric transistors and is benchmarked to other reported mobility extraction techniques. Fast transient charging effects in high-/spl kappa/ gate stacks are shown to cause the mobility extracted using conventional dc-based techniques to be lower than the intrinsic mobility.  相似文献   

11.
The device performance and reliability of higher-/spl kappa/ HfTaTiO gate dielectrics have been investigated in this letter. HfTaTiO dielectrics have been reported to have a high-/spl kappa/ value of 56 and acceptable barrier height relative to Si (1.0 eV). Through process optimization, an ultrathin equivalent oxide thickness (EOT) (/spl sim/9 /spl Aring/) has been achieved. HfTaTiO nMOSFET characteristics have been studied as well. The peak mobility of HfTaTiO is 50% higher than that of HfO/sub 2/ and its high field mobility is comparable to that of HfSiON with an intentionally grown SiO/sub 2/ interface, indicative of superior quality of the interface and bulk dielectric. In addition, HfTaTiO dielectric has a reduced stress-induced leakage current (SILC) and improved breakdown voltage compared to HfO/sub 2/ dielectric.  相似文献   

12.
We demonstrate a high-performance metal-high /spl kappa/ insulator-metal (MIM) capacitor integrated with a Cu/low-/spl kappa/ backend interconnection. The high-/spl kappa/ used was laminated HfO/sub 2/-Al/sub 2/O/sub 3/ with effective /spl kappa/ /spl sim/19 and the low-/spl kappa/ dielectric used was Black Diamond with /spl kappa/ /spl sim/2.9. The MIM capacitor (/spl sim/13.4 fF//spl mu/m/sup 2/) achieved a Q-factor /spl sim/53 at 2.5 GHz and 11.7 pF. The resonant frequency f/sub r/ was 21% higher in comparison to an equivalently integrated Si/sub 3/N/sub 4/-MIM capacitor (/spl sim/0.93 fF//spl mu/m/sup 2/) having similar capacitance 11.2 pF. The impacts of high-/spl kappa/ insulator and low-/spl kappa/ interconnect dielectric on the mechanism for resonant frequency improvement are distinguished using equivalent circuit analysis. This letter suggests that integrated high-/spl kappa/ MIM could be a promising alternative capacitor structure for future high-performance RF applications.  相似文献   

13.
We have studied the bias-temperature instability of three-dimensional self-aligned metal-gate/high-/spl kappa//Germanium-on-insulator (GOI) CMOSFETs, which were integrated on underlying 0.18 /spl mu/m CMOSFETs. The devices used IrO/sub 2/--IrO/sub 2/-Hf dual gates and a high-/spl kappa/ LaAlO/sub 3/ gate dielectric, and gave an equivalent-oxide thickness (EOT) of 1.4 nm. The metal-gate/high-/spl kappa//GOI p-and n-MOSFETs displayed threshold voltage (V/sub t/) shifts of 30 and 21 mV after 10 MV/cm, 85/spl deg/C stress for 1 h, comparable with values for the control two-dimensional (2-D) metal-gate/high-/spl kappa/-Si CMOSFETs. An extrapolated maximum voltage of -1.2 and 1.4 V for a ten-year lifetime was obtained from the bias-temperature stress measurements on the GOI CMOSFETs.  相似文献   

14.
Pulsed excimer laser annealing (ELA) is used to reduce the poly-Si gate depletion effect (to <0.1 nm). Low resistivity (0.58 m/spl Omega//spl middot/cm) and high active boron concentration (4/spl times/10/sup 20/ cm/sup -3/) at the gate-oxide interface are achieved while preserving the gate oxide quality and avoiding boron penetration, to meet International Technology Roadmap for Semiconductors requirements for sub-65-nm CMOS technology nodes. ELA is compatible with high-/spl kappa/ dielectric (HfO/sub 2/) and results in significantly lower gate leakage current density as compared with rapid thermal annealing (RTA).  相似文献   

15.
Low-frequency noise measurements were performed on p- and n-channel MOSFETs with HfO/sub 2/, HfAlO/sub x/ and HfO/sub 2//Al/sub 2/O/sub 3/ as the gate dielectric materials. The gate length varied from 0.135 to 0.36 /spl mu/m with 10.02 /spl mu/m gate width. The equivalent oxide thicknesses were: HfO/sub 2/ 23 /spl Aring/, HfAlO/sub x/ 28.5 /spl Aring/ and HfO/sub 2//Al/sub 2/O/sub 3/ 33 /spl Aring/. In addition to the core structures with only about 10 /spl Aring/ of oxide between the high-/spl kappa/ dielectric and silicon substrate, there were "double-gate oxide" structures where an interfacial oxide layer of 40 /spl Aring/ was grown between the high-/spl kappa/ dielectric and Si. DC analysis showed low gate leakage currents in the order of 10/sup -12/A(2-5/spl times/10/sup -5/ A/cm/sup 2/) for the devices and, in general, yielded higher threshold voltages and lower mobility values when compared to the corresponding SiO/sub 2/ devices. The unified number-mobility fluctuation model was used to account for the observed 1/f noise and to extract the oxide trap density, which ranged from 1.8/spl times/10/sup 17/ cm/sup -3/eV/sup -1/ to 1.3/spl times/10/sup 19/ cm/sup -3/eV/sup -1/, somewhat higher compared to conventional SiO/sub 2/ MOSFETs with the similar device dimensions. There was no evidence of single electron switching events or random telegraph signals. The aim of this paper is to present a general discussion on low-frequency noise characteristics of the three different high-/spl kappa//gate stacks, relative comparison among them and to the Si--SiO/sub 2/ system.  相似文献   

16.
We demonstrate a programmable-erasable MIS capacitor with a single layer high-/spl kappa/ AlN dielectric on Si having a high capacitance density of /spl sim/5 fF//spl mu/m/sup 2/. It has low program and erase voltages of +4 and -4 V, respectively. Such an erase function is not available in other single layer Al/sub 2/O/sub 3/, AlON, or other known high-/spl kappa/ dielectric capacitors, where the threshold voltage (V/sub th/) shifts continuously with voltage. This device exhibits good data retention with a V/sub th/ change of only 0.06 V after 10 000 s.  相似文献   

17.
We have demonstrated the advantages of silicon interlayer passivation on germanium MOS devices, with CVD HfO/sub 2/ as the high-/spl kappa/ dielectric and PVD TaN as the gate electrode. A silicon interlayer between a germanium substrate and a high-/spl kappa/ dielectric, deposited using SiH/sub 4/ gas at 580/spl deg/C, significantly improved the electrical characteristics of germanium devices in terms of low D/sub it/ (7/spl times/10/sup 10//cm/sup 2/-eV), less C- V hysteresis and frequency dispersion. Low leakage current density of 5/spl times/10/sup -7/ A/cm/sup 2/ at 1 V bias with EOT of 12.4 /spl Aring/ was achieved. Post-metallization annealing caused continuing V/sub fb/ positive shift and J/sub g/ increase with increased annealing temperature, which was possibly attributed to Ge diffusion into the dielectric during annealing.  相似文献   

18.
It has been reported that mobility in high-/spl kappa/ gate dielectric metal-insulator semiconductor field-effect transistors is lower than that in conventional metal-oxide semiconductor field-effect transistors and the reason for this degradation has been considered to be the fixed charge in dielectric films as well as remote phonon scattering. We investigated the influence of dielectric constant distribution in gate dielectrics on electron mobility determined by remote Coulomb scattering (/spl mu//sub RCS/) using numerical simulations and a physical model. It is shown that electron mobility in the inversion layer is strongly affected by the dielectric constant distribution in gate dielectrics. In the case of stacked-gate dielectrics of a high-/spl kappa/ film and an interfacial layer, mobility has a minimum as the dielectric constant of the interfacial layer increases while it increases virtually monotonically with dielectric constant of the high-/spl kappa/ film. These phenomena are explained, considering the electrical potential in the substrate induced by fixed charges in gate dielectrics using the Born approximation. Preferable dielectric constant distribution is presented in terms of the suppression of the remote Coulomb scattering.  相似文献   

19.
High work function (4.9 eV) on high-/spl kappa/ gate dielectric, which is suitable for bulk p-MOSFET, has been achieved using fully silicided (FUSI) Pt/sub x/Si gate without boron predoping of polysilicon. High concentration of Pt in FUSI Pt/sub x/Si using Ti capping layer on Pt in the FUSI process is a key to achieving high work function and reduced Fermi-level pinning on high-/spl kappa/ dielectric. By combining with substituted Al (SA) gate for nMOSFET, a wide range of work function difference (0.65 eV) between n and pMOSFETs is demonstrated, without any adverse effects of polysilicon predoping.  相似文献   

20.
Ultrathin nMOSFET hafnium oxide (HfO/sub 2/) gate stacks with TiN metal gate and poly-Si gate electrodes are compared to study the impact of the gate electrode on long term threshold instability reliability for both dc and ac stress conditions. The poly-Si/high-/spl kappa/ interface exhibits more traps due to interfacial reaction than the TiN/high-/spl kappa/ interface, resulting in significantly worse dc V/sub th/ instability. However, the V/sub th/ instability difference between these two stacks decreases and eventually diminishes as ac stress frequency increases, which suggests the top interface plays a minor role in charge trapping at high operating frequency. In addition, ac stress induced interface states (Nit) can be effectively recovered, resulting in negligible G/sub m/ degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号