首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文以南果梨为原料,研究了复合酶法制取南果梨汁最优工艺。通过单因素实验研究复合酶添加量、酶解时间、果胶酶与纤维素酶配比和酶解温度对南果梨出汁率和可溶性固形物含量的影响;在此基础上,采用Box-Behnken实验设计法,优化复合酶酶解南果梨汁工艺参数,以提高南果梨出汁率和可溶性固形物含量。结果表明:在复合酶添加量0.15%、酶解时间119 min、酶比例3∶1、酶解温度42℃的条件下,南果梨出汁率达78.15%,与理论值77.42%基本相符(相对误差0.93%);与未经酶处理相比,出汁率提高了12.92%,可溶性固形物含量提高了1.72%。由实验结果可知,经复合酶酶解后南果梨出汁率和可溶性固形物含量等相关理化指标均有显著提高。   相似文献   

2.
该文利用果胶酶-纤维素酶复合酶对余甘子汁进行二次榨汁,进一步提高余甘子的出汁率。以出汁率、可溶性固形物含量、总酸含量为指标,通过单因素和响应面试验优化余甘子汁复合酶解最佳工艺条件。结果显示,果胶酶-纤维素酶复合酶酶解余甘子汁的最佳工艺参数为果胶酶-纤维素酶质量比1.1∶1、复合酶添加量0.01%、酶解时间2.9 h、酶解温度55℃,该工艺条件下出汁率为(88.81±0.20)%、可溶性固形物含量为(14.57±0.06)%、总酸含量为(29.28±0.15)g/L。应用复合酶对余甘子汁进行二次榨汁,能有效提高余甘子汁的二次榨汁出汁率。  相似文献   

3.
以红枣为原料,研究了采用酶解法制备红枣澄清汁的工艺参数.单因素和正交实验结果表明:采用复合酶较单一酶酶解红枣能有效提高红枣汁出汁率和可溶性固形物合量;复合酶加工红枣澄清汁的最佳工艺条件为:纤维素酶∶果胶酶质量配比为1∶3,加酶量为底物质量的0.020%,酶解时间为2 h,酶解温度为50℃.在此条件下,红枣汁的出汁率为84.0%,可溶性固形物含量为12.8%.  相似文献   

4.
为了提高香蕉出汁率,研究不同成熟度对香蕉出汁率的影响,并通过果胶酶和纤维素酶复合酶解正交实验优化完熟香蕉。结果表明:成熟度越高,香蕉的出汁率越高,可溶性固形物含量也越高;采用表皮全黄香蕉果实为原料,添加果胶酶0.01%,纤维素酶0.125%,酶解温度55℃,酶解时间2h,香蕉汁的可溶性固形物含量可达20.0Brix,香蕉果实出汁率最大为82.7%,较直接压榨取的出汁率49.9%提高了32.8%。  相似文献   

5.
以宁夏枸杞鲜果为原料,经打浆与护色后,用不同酶制剂进行酶解处理,结合酶量、反应温度、反应时间及底物p H,考察对枸杞出汁率和可溶性固形物的影响。经单因素和Box-Behnken优化实验,确定枸杞浆最佳酶解工艺。实验确定的果胶酶酶解最优条件为:果胶酶添加量0.016%,温度41℃,酶解时间1.3 h,枸杞浆出汁率为48.75%。复合酶酶解最优条件为:复合酶(果胶酶∶纤维素酶=3∶7)添加量0.09%,酶解温度35℃,酶解时间2.7 h,枸杞浆出汁率为49.20%。且两种酶对可溶性固形物无显著性影响(p>0.05)。结果表明:果胶酶及复合酶均能大幅度提高枸杞果的出汁率,但复合酶比单一果胶酶对提高枸杞果出汁率效果更好。   相似文献   

6.
以大果山楂为原料,通过单因素和正交实验考察果胶酶添加量、纤维素酶添加量、酶解温度、酶解时间对大果山楂出汁率的影响。结果表明:当果胶酶添加量为0.3‰,纤维素酶添加量为0.4‰,酶解温度为45℃,酶解时间为80 min时,大果山楂的出汁率最高,达到75.60%,比对照组提高了44.19%。在此条件下,复合酶酶解同时提高大果山楂汁的总酚、黄酮及花青苷含量,对可溶性固形物和总酸含量无较大的影响。  相似文献   

7.
为提高沾化冬枣的出汁率,采用酶解法对冬枣进行处理,确定复合酶(果胶酶和纤维素酶)的效果优于单一酶,并确定复合酶的质量比为1∶2时效果最好。同时,在单因素试验基础上,采用Box-Behnken响应面设计优化冬枣汁酶法提取工艺,研究酶用量、酶解时间、酶解温度对冬枣出汁率和可溶性固形物含量的影响。试验结果表明,酶用量为0.1%、酶解时间为68 min、酶解温度为50℃,在此条件下出汁率可达到(72.27±0.3)%、可溶性固形物含量为(8.0±0.2)%,与预测结果基本相符。  相似文献   

8.
目的 探讨不同取汁工艺对青竹梅出汁率及品质的影响。方法 以新鲜青竹梅为实验材料, 研究水浴提取法、超声波辅助提取法和复合酶法对青竹梅出汁率的影响, 对比分析3种方法在最优条件下的出汁率、可溶性固形物、可滴定酸、总糖、类黄酮和总酚等指标差异。结果 水浴提取法最优工艺料液比1?4(g:mL), 水浴温度80 ℃, 水浴时间60 min, 出汁率52.4%; 超声波辅助提取法最优工艺: 料液比1?4(g:mL), 超声波功率140 W, 提取温度60 ℃, 提取时间20 min, 出汁率53.2%; 复合酶解法最优工艺: 果胶酶添加量为0.6%, 纤维素酶添加量为0.2%, 酶解温度40 ℃, 酶解时间90 min, 出汁率66.6%。结论 3种方法均可有效提高青竹梅出汁率, 但复合酶法出汁率最高且综合营养成分提取效果最好。  相似文献   

9.
酶制剂在苹果液化过程中的应用研究   总被引:2,自引:0,他引:2  
研究苹果汁加工中酶法液化的工艺条件,通过单因素实验和正交实验找出最佳应用参数,并与传统工艺进行比较。结果表明最佳液化参数组合为果胶酶添加量0.15%,酶解温度50℃,酶解时间30min,在此条件下苹果出汁率86.3%,可溶性固形物含量为5.94oBrix、浊度为15.4NTU、与传统工艺相比出汁率提高了9.8%,可溶性固形物含量增加了1.4倍,浊度下降了92.0%。  相似文献   

10.
为提高冬枣汁的出汁率,采用复合酶(果胶酶∶纤维素酶=1∶1)对冬枣进行酶解。研究复合酶用量、酶解温度、酶解时间对冬枣出汁率的影响。在单因素实验的基础上,通过响应面法优化酶解制备冬枣汁的工艺条件。得到最佳工艺条件为:复合酶用量0.0156%、酶解温度29℃、酶解时间20.8min。在此条件下,出汁率达72.4%。表明酶解处理是提高冬枣汁出汁率的有效方法。   相似文献   

11.
为减少费约果细胞壁中果胶和半纤维素等物质对果汁品质的负面影响,提高果汁出汁率,本文研究了复合酶(半纤维素酶和果胶酶)比例、加酶量、温度、时间对“Unique U-100”费约果果汁出汁率和可溶性固形物的影响。在单因素实验的基础上,进行四因素三水平的响应面优化。结果显示:在复合酶(半纤维素酶/果胶酶)比例为2.14:1,加酶量19.6 g/L,酶解温度56.8℃,酶解时间92 min的条件下,费约果果实出汁率最高,为79.5%,与模型预测值相对误差为5.67%;果汁中可溶性固形物含量为15.7%,与模型预测值相对误差为0.83%。此外,与直接压榨的费约果果汁相比,酶解后的果汁表现出更高的澄清度、总酚含量(24.4 mg GAE/100 g)和VC含量(2.42 mg/100 g)。因此,本研究优化了复合酶酶解制备费约果果汁的工艺,提高费约果果汁出汁率和营养品质,可为后续费约果果汁深加工提供理论依据。  相似文献   

12.
采用酶解技术提高西番莲果渣的出汁率,对4种水解酶进行筛选,得到果胶酶与纤维素酶的混合酶的酶解效果最好。以西番莲果渣为原料,以果渣出汁率、果汁可溶性固形物含量与维生素C含量为指标,采用单因素试验探讨酶添加量、酶解pH、酶解温度、酶解时间对果渣汁液质量的影响,并通过正交试验优化果渣酶解工艺。结果表明,最佳酶解工艺为:混合酶0.2%、酶解pH 4.5、酶解时间4 h、酶解温度50℃。在此条件下果渣出汁率达到83.36%,可溶性固形物含量为16.27%,维生素C含量为17.29%。  相似文献   

13.
复合酶解制备甜橙全果浊汁工艺优化   总被引:1,自引:0,他引:1  
以甜橙全果为原料制备甜橙全果浊汁,通过单因素试验和正交试验,以全果浊汁的出汁率和悬浮稳定性为指标,用果胶酶和蛋白酶进行酶解处理,得出酶解最优工艺条件为:果胶酶添加量0.01%,蛋白酶添加量0.2%,酶解时间40min,酶解温度40℃,该条件下果浆含量30%的全果果汁的出汁率为83.27%,660nm处的OD值为0.431。该复合酶解方法能显著提高甜橙全果果汁的出汁率并使果汁保持较好的悬浮稳定性,经酶解后,果浆含量20%和30%的全果果汁具有较好的感官品质。  相似文献   

14.
果胶酶和纤维素酶对芒果出汁率及品质的影响   总被引:1,自引:0,他引:1  
为提高芒果的出汁率,采用果胶酶和纤维素酶对芒果浆进行酶解,通过正交实验研究了果胶酶添加量、纤维素酶添加量、酶解温度、酶解时间4个因素对芒果出汁率的影响。结果表明:当果胶酶添加量为0.01%、纤维素酶添加量为0.007%、酶解时间为60min、酶解温度为40℃时,芒果的出汁率最高,达到71.15%;酶解得到的芒果汁可溶性固形物为16.7%±0.1%,可滴定酸为0.51%±0.08%,类胡萝卜素为(1.23±0.07)mg/100g,还原糖为7.6%±0.08%,果胶含量为(357±1.32)mg/100g,保留了鲜芒果的营养成分。  相似文献   

15.
对芦荟的酶处理工艺条件进行了研究。结果表明,酶处理的最优工艺条件是:果胶酶量9‰、纤维素酶量5‰、pH4.5、酶解温度45℃、酶解时间3h。与源汁相比,经酶处理后的芦荟出汁率、稳定性得到了提高,可溶性固形物和多粮含量也明显提高,品质得到了改善。  相似文献   

16.
为提高南瓜的出汁率和营养物质含量,采用混合酶法制备南瓜汁。首先进行了单因素试验,确定了果胶酶、纤维素酶、糖化酶各自酶添加量、最适pH、温度和时间。然后采用L9(3^4)正交试验,确定了混合酶的最佳配比为果胶酶0.03%、纤维素酶0.7%、糖化酶0.04%,在此基础上,通过L9(3^4)正交试验,得到混合酶解最佳工艺参数为体系pH4.5、温度50℃、时间3h。在此最佳酶解条件下,获得出汁率为88.4%,总糖含量为原料重量的24.13%,可溶性固形物含量为11.48%的南瓜汁。  相似文献   

17.
为了优化复合酶制取赤霞珠葡萄汁工艺,以赤霞珠葡萄为原料,利用果胶酶、纤维素酶和β-葡聚糖酶复合制取赤霞珠葡萄汁。通过单因素实验研究了复合酶添加量、复合酶配比、酶解时间对葡萄汁出汁率和花色苷含量的影响,结合Box-Behnken响应面法优化复合酶解葡萄汁工艺,同时用高效液相色谱法(HPLC)比较不同酶处理对葡萄汁中原花青素含量的影响。结果表明,最佳酶解工艺条件为:复合酶添加量0.66%、复合酶配比1∶1∶1、酶解时间6.3 h,在此工艺条件下,葡萄汁的出汁率为87.103%±0.471%,花色苷含量为(254.664±2.359) mg/L,复合酶处理葡萄汁的原花青素含量显著高于单一酶处理(p 0.05)。  相似文献   

18.
为优化胡萝卜制汁工艺,以出汁率为指标,通过单因素试验研究纤维素酶-果胶酶配比、酶解时间、酶解温度对胡萝卜出汁率的影响,再通过Box-Behnken试验法与响应面分析法,研究各自变量及其交互作用对胡萝卜出汁率的影响,建立了二次多项式回归预测模型。结果表明:复合酶酶解胡萝卜浆的最佳条件为纤维素酶-果胶酶配比2.2∶10(g/g)、复合酶添加量0.3%、酶解时间1.94 h、酶解温度41.67 ℃。在此酶解条件下,胡萝卜出汁率为(79.36±0.23)%,与响应面预测值79.06%拟合性较好,对实际生产有一定指导意义。  相似文献   

19.
目的:研究酶解提取酥李果汁的最佳工艺条件,为李深加工利用提供理论参考。方法:以酥李出汁率为指标,在单因素实验基础上采用响应面试验优化,对单一果胶酶、单一纤维素酶、复合酶(果胶酶和纤维素酶)提取酥李果汁的工艺条件分别进行优化。结果:不同加酶方式中对酥李出汁率的影响因素顺序均为酶解温度>加酶量>酶解pH>酶解时间;果胶酶酶解提取酥李果汁的最佳工艺条件为:加酶量0.45 g/L、酶解温度38 ℃、酶解pH3.8、酶解时间72 min,出汁率提高27.13%;维素酶酶解提取酥李果汁的最佳工艺条件为:加酶量0.55 g/L、酶解温度41 ℃、酶解pH4.2、酶解时间105 min,出汁率提高20.18%;复合酶酶解提取酥李果汁的最佳工艺条件为:果胶酶添加量0.45 g/L、纤维素酶添加量0.55 g/L、酶解温度41 ℃、酶解pH4.0、酶解时间87 min,出汁率提高31.79%。三种加酶方式中,回归模型均能较好地反应相应酶制备酥李果浆的出汁率,所得工艺合理可靠。结论:在酶法提取酥李果汁过程中,果胶酶和纤维素酶的不同添加方式均能有效提高酥李出汁率,其中采用复合酶提取酥李果汁效果最佳。本研究成果为贵州李产品开发提供了一定的技术参考。  相似文献   

20.
《中国食品添加剂》2019,(3):133-139
采用果胶酶法制备马铃薯汁,以马铃薯出汁率为评价指标,分别考察酶解时间、酶添加量、酶解温度、酶解pH对马铃薯出汁率的影响,在单因素实验的基础上,采用响应面法优化马铃薯汁的最佳制备工艺。结果表明:马铃薯汁的最佳制备工艺为酶添加量为4.55 mg/g,酶解时间100 min,酶解温度45℃,酶解pH 2.30,在此酶解条件下,马铃薯出汁率为78.23%,与响应面预测值77.16%拟合良好。利用此方法建立的马铃薯汁酶解工艺二次线性回归响应面模型准确有效,酶解法优化马铃薯汁的制备工艺参数是可行的,为进一步研究马铃薯相关产品提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号