首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
大孔吸附树脂法纯化苦豆子渣总黄酮工艺的研究   总被引:1,自引:0,他引:1  
叶学军  李力  杨晋 《食品科技》2012,(1):210-214
目的:考察5种大孔吸附树脂对苦豆子渣总黄酮的吸附分离性能。方法:以黄酮吸附量、解吸量为考察指标,采用静态和动态吸附分离法确定适合的大孔吸附树脂和纯化工艺条件。结果:AB-8型大孔吸附树脂对苦豆子渣总黄酮有良好的吸附分离性能,其最佳工艺为:最佳上样量为0.864mg/mL(树脂)、上样液流速为2BV/h、解吸液为95%乙醇、解吸液用量为4BV、解吸附流速为2BV/h。结论:AB-8可较好的吸附分离苦豆子渣总黄酮,纯化后黄酮纯度提高1倍以上。  相似文献   

2.
在前期研究超声波辅助提取沙枣果总黄酮的工艺基础上,为探讨沙枣果总黄酮的纯化工艺,选择大孔树脂为吸附剂来分离纯化沙枣果总黄酮。先进行了大孔树脂的选择试验研究和大孔树脂静态吸附动力学研究,结果表明AB-8树脂的吸附量和解吸率都较高,是适于吸附分离沙枣果总黄酮的理想树脂类型。在此基础上,通过AB-8大孔树脂对沙枣果总黄酮动态吸附试验、动态洗脱试验确定出沙枣果总黄酮的最佳纯化条件:上样量70 m L、上样浓度0.5 mg/m L、p H4.0、上样流速1.0 m L/min;使用4BV用量的90%乙醇作为洗脱剂进行洗脱,解析流速为1.5 m L/min;AB-8大孔树脂对沙枣果总黄酮的纯化效果较好,纯度为65.56%,是粗提黄酮纯度的2.84倍。并对纯化后的沙枣果总黄酮进行成分鉴定和抗氧化性能评价,结果表明,沙枣果总黄酮纯化物抗脂质过氧化能力明显强于VC和PG,3种自由基抗氧化能力均强于PG,弱于VC。  相似文献   

3.
以红腰豆总黄酮粗提液为原料,研究大孔树脂对红腰豆黄酮的纯化工艺和效果,比较了8种树脂对红腰豆总黄酮的静态吸附和解吸性能,对AB-8型大孔树脂分离纯化红腰豆总黄酮进行了单因素、BoxBenhnken中心组合设计和响应面法优化试验,并考察了红腰豆总黄酮纯化前后体外抗氧效果。结果表明:AB-8树脂为纯化红腰豆总黄酮的最佳树脂,其最佳的吸附工艺条件为:上样质量浓度4.0 mg/m L,上样液pH 6.3,上样流速2.0 m L/min,上样体积5.0 BV,在此条件下吸附率可达(98.03±0.30)%;最佳的解吸工艺条件为乙醇体积分数75%,洗脱流速3.0 m L/min,洗脱体积2.0 BV,在此条件下解吸率可达(94.52±0.24)%。纯化后红腰豆总黄酮纯度提高了约2.85倍,纯化前DPPH·、·OH和O-2·的清除率IC50值分别为1.18、1.40、6.51 mg/m L,纯化后分别为0.37、0.82、1.77 mg/m L,纯化后红腰豆总黄酮提取物的体外抗氧化活性明显增强。  相似文献   

4.
考察了不同大孔树脂对伦晚脐橙残次果总黄酮的吸附与解吸性能,筛选出适宜纯化的大孔树脂AB-8。以芸香柚皮苷、橙皮苷、香蜂草苷、甜橙黄酮、川陈皮素、橘皮素6种标准品绘制标准曲线,采用高效液相色谱法(HPLC)进行定性、定量分析。通过静态与动态吸附、解吸,得出大孔树脂AB-8纯化伦晚脐橙残次果总黄酮的最佳工艺条件为:0.75 mg/m L的p H=3上样液,上样体积为3.5倍柱体积(BV),上样流速为2 BV/h;80%乙醇为洗脱剂,2 BV/h流速洗脱,洗脱体积为5 BV,解吸率达90.73%。经大孔树脂纯化后,提取物中总黄酮含量由纯化前36.04 mg/g增加到纯化后334.54 mg/g。HPLC分析结果表明,AB-8分离纯化伦晚脐橙总黄酮不会造成单体黄酮组成变化,其中主要黄酮类物质是芸香柚皮苷、橙皮苷,占总量的91.14%。该工艺能有效地富集伦晚脐橙黄酮类,去除糖、色素等物质,且对伦晚脐橙黄酮组分没有影响。  相似文献   

5.
通过比较D101、AB-8、HPD400、HPD500、HPD417、HPD826六种大孔树脂的静态吸附效果,从中筛选出适合分离新疆圆柏总黄酮的树脂,并在单因素实验基础上正交优化最佳大孔树脂对新疆圆柏总黄酮的纯化工艺。结果表明,D101大孔树脂对新疆圆柏总黄酮具有较好的分离效果;最佳纯化工艺条件为,上样浓度1.2256 mg/m L,上样流速1.0 m L/min,除杂用水量5 BV,乙醇浓度50%,洗脱剂用量4 BV,洗脱流速1.0 m L/min。在此条件下获得总黄酮回收率为88.36%,纯度为69.96%。  相似文献   

6.
对大孔树脂纯化洋甘菊中总黄酮工艺条件进行优化研究。建立紫外-可见分光光度法测定洋甘菊中总黄酮方法;以吸附率、解吸率为评价指标,考察树脂类型、上样浓度、上样体积、洗脱浓度、洗脱体积对纯化工艺的影响。通过绘制静态吸附平衡曲线、泄露曲线和动态解吸曲线,综合评判确定最优工艺。结果表明:AB-8树脂对洋甘菊中总黄酮纯化效果较好,当上样质量浓度为1.8 mg/m L,上样体积流量为1 BV/h;洗脱剂用70%乙醇,体积流量为1.0 BV/h对洋甘菊中总黄酮的吸附率为62.5%、解吸率68%、回收率61%。经AB-8大孔树脂纯化洋甘菊中总黄酮提高25.3%,此方法稳定可靠,可用于洋甘菊总黄酮的工业纯化要求。  相似文献   

7.
大孔树脂分离纯化花生壳总黄酮的研究   总被引:2,自引:0,他引:2  
为了分离纯化花生总壳黄酮,比较了8种大孔树脂的静态吸附过程,筛选出了适合吸附花生壳总黄酮的树脂。研究了花生壳总黄酮在大孔吸附树脂上的动态吸附特性,并确定分离花生壳总黄酮的适宜工艺条件。结果表明:AB-8大孔树脂对花生壳总黄酮有较好的吸附分离性能,其对花生壳总黄酮的静态吸附平衡时间为4 h;AB-8型大孔树脂对花生壳总黄酮有较好的吸附和解吸效果;较优的吸附分离工艺参数为:样液pH值6.0,上样液流速1 mL/m in,上样液质量浓度0.5 mg/mL,用70%乙醇洗脱时,解吸率达94.23%,3 BV洗脱液基本上能将花生壳总黄酮洗脱下来。  相似文献   

8.
以葡萄糖为标准品,利用大孔吸附树脂分离纯化玉竹多糖,结果表明AB-8大孔吸附树脂分离纯化玉竹多糖的最佳上样浓度为1.0 mg/m L,最佳洗脱浓度为75%乙醇,最佳流速为1.0 m L/min,洗脱液体积为上样的10 BV,玉竹粗多糖的纯度从65.23%提高到78.64%;D-101大孔吸附树脂分离纯化玉竹多糖的最佳上样浓度为0.6 mg/m L,最佳洗脱浓度为50%乙醇,最佳流速为1.0 m L/min,洗脱液体积为上样的10.5 BV,玉竹粗多糖的纯度从65.23%提高到73.79%。AB-8大孔吸附树脂对玉竹多糖的分离纯化效果优于D-101大孔吸附树脂。  相似文献   

9.
利用7种大孔吸附树脂对油菜蜂花粉总黄酮进行了分离纯化研究,结果筛选出AB-8型树脂的吸附量大,易于洗脱,纯化分离效果好.通过对AB-8型树脂的动态吸附研究,得出的最佳分离纯化工艺参数为:上样溶液浓度0.91mg/mL,pH为5,吸附流速2.5mL/min,洗脱采用50%的乙醇以1mL/min的流速洗脱3BV.  相似文献   

10.
以总黄酮吸附量为考察指标,采用分光光度法进行测定,先从D101、AB-8、HPD-400、D001、X-5五种不同类型大孔树脂中筛选出静态分离纯化文冠果落果总黄酮的最佳树脂,再对该树脂进行动态吸附工艺参数研究,以确定其对文冠果落果总黄酮的最优纯化方案。结果表明,HPD-400型大孔树脂对文冠果落果总黄酮分离纯化效果最好,优选工艺条件:上样液浓度0.53 mg/m L,上样液p H3.0,上样体积为1.5 BV,上样流速为3 BV/h;洗脱流速为2 BV/h,去离子水除杂体积2 BV,40%乙醇洗脱液3 BV,产物中总黄酮纯度45.79%。上述采用HPD-400型树脂分离纯化文冠果落果总黄酮效果最好,且具有工艺稳定性。  相似文献   

11.
研究大孔吸附树脂分离纯化菜芙蓉黄酮的最佳工艺条件。以总黄酮吸附量和解吸量为指标,进行静态吸附和解吸试验对14种型号大孔树脂进行筛选,再通过动态吸附和解吸试验对纯化工艺参数进行优化。Z801大孔树脂对菜芙蓉总黄酮的吸附与解吸性能最佳。HZ801纯化菜芙蓉黄酮的最佳工艺条件为:上样浓度为1 mg/m L,上样流速2 m L/min,上样量为140 m L;依次用2 BV水洗脱,用70%乙醇以2 m L/min的速率洗脱2.2 BV。在优化工艺条件下,菜芙蓉黄酮的平均吸附率是95.03%,纯化倍数4.04。HZ801型大孔树脂富集黄酮的效果最佳,是一种较理想的分离纯化介质。  相似文献   

12.
AB-8大孔树脂纯化荷叶总黄酮的工艺研究   总被引:2,自引:0,他引:2  
黄酮类化合物是荷叶的主体活性成分,大孔吸附树脂是一类有机高聚物吸附剂,尤其适用于黄酮类化学物的分离纯化.本实验采用大孔树脂对荷叶总黄酮进行分离纯化,确定其分离纯化条件.树脂的筛选试验结果和静态吸附动力学研究表明:在所选择的6种大孔树脂中, AB-8大孔树脂属于快速吸附树脂,吸附量和解吸率都较高,是理想的适用于荷叶黄酮吸附分离的树脂类型,故采用AB-8大孔树脂分离纯化荷叶总黄酮.AB-8大孔树脂动态吸附实验和动态洗脱实验结果表明:当树脂径高比1 ∶ 10;吸附流速3BV/h;上样液pH值5.0;上样液浓度在2.0mg/mL;使用3BV用量90%的乙醇作为洗脱剂;解析流速为1.5BV/h时,荷叶黄酮纯度为53.44%.颜色反应初步鉴定结果表明:荷叶中的黄酮物质大多属于黄酮、黄酮醇类化合物.  相似文献   

13.
采用大孔吸附树脂对苦竹笋总黄酮进行纯化,探索其最佳工艺条件,并对其富集产物进行体外抗炎活性测定。首先对树脂的筛选、吸附动力学、吸附等温线和热力学进行了研究,再进行动态吸附和解吸试验,筛选得出AB-8是最适宜纯化苦竹笋总黄酮的树脂。准二级动力学模型和Langmuir等温线模型对吸附数据进行了最佳描述,吸附过程自发、放热。确定纯化最优工艺为:上样量4.2 BV(105 m L)、上样液质量浓度1.55 mg/m L、上样流速1 BV/h、上样液p H值为7、洗脱剂为50%乙醇溶液(体积分数)、洗脱剂用量8 BV(200 m L)、洗脱流速4 BV/h,在此工艺条件下,总黄酮回收率可达到75.03%,总黄酮含量由原来的2.46%提高至15.72%。且纯化后的苦竹笋总黄酮表现出更好的NO抑制作用,纯化样品总黄酮浓度达到1.04 mg/m L抑制率可达到97.80%(NO浓度为5.60μmol/L),而同一总黄酮浓度下的粗提样品中NO浓度为13.81μmol/L,抑制率仅为73.22%。综上,该实验建立的苦竹笋总黄酮的纯化方法有效可行。  相似文献   

14.
目的在前期对水提紫甘薯色素废渣总黄酮提取研究基础上,本研究进一步深入研究其总黄酮的纯化工艺,旨在为水提紫甘薯色素废渣的综合开发利用提供理论基础和参考依据。方法通过静态吸附、解吸和动态吸附、解吸等试验来考察AB-8大孔树脂的纯化性能,对水提紫甘薯色素废渣总黄酮粗提液进行纯化。结果 AB-8大孔树脂对水提紫甘薯色素废渣总黄酮有较好的吸附和解吸性能,吸附率达86.43%;最佳上样p H值为3.0;解吸液以2BV浓度为80%的乙醇水溶液解吸效果最好,解吸率达89.79%;解吸流速以1 m L/min效果最好。结论采用AB-8大孔吸附树脂纯化水提紫甘薯色素废渣总黄酮所得工艺具有较好的纯化效果,且方法简便可行。  相似文献   

15.
主要研究了大孔树脂分离纯化蚕蛹多肽工艺。以蚕蛹多肽纯度为指标,选用AB-8大孔树脂分离纯化蚕蛹多肽,通过响应面分析法确定大孔树脂分离纯化蚕蛹多肽最佳工艺条件,即吸附流速为8 BV/h,乙醇体积分数为71%,上样液浓度为0.4 g/m L,洗脱流速9 BV/h,在此条件下蚕蛹多肽纯度为87.8%。  相似文献   

16.
采用静态吸附和动态吸附实验考察AB-8、D101、HPD100、HPD400、HPD450、HPD500、HPD600和HPD7007种大孔树脂对薰衣草总黄酮富集纯化效果,并优化最佳大孔树脂对薰衣草总黄酮的吸附与解吸工艺条件.结果表明,AB-8型大孔树脂具有良好的吸附与解吸附性能,最佳工艺条件为,最大上样量为12.76 mg/mL树脂,吸附流速为1.0 mL/min,洗脱采用70%乙醇以1.0 mL/min的流速洗脱5 BV;薰衣草总黄酮的纯度可达60%以上.  相似文献   

17.
以黄酮含量为指标,通过静态吸附与解吸试验,从5种大孔吸附树脂中筛选出效果较好的AB-8树脂进行动态试验研究。结果表明:AB-8大孔树脂分离纯化苦菜叶黄酮的工艺条件为上样溶液p H值为5.0,上样溶液质量浓度为2mg/m L,吸附流速为2.0m L/min,洗脱剂乙醇浓度为60%,洗脱流速为1m L/min,洗脱剂用量为540m L。经过AB-8树脂纯化后,苦菜叶黄酮纯度提高到46.3%。该方法简单可行,适合于工业化生产。  相似文献   

18.
为优化大孔吸附树脂分离纯化苦荞总皂苷的工艺条件,通过静态吸附解吸实验筛选出适合分离纯化苦荞总皂苷的大孔吸附树脂SP700,其饱和吸附量为(25.241±0.590)mg皂苷/g树脂。研究了样液浓度、吸附时间对吸附容量的影响,乙醇体积分数对解吸得率的影响,并进行了动态实验,确定了SP700型大孔树脂分离纯化苦荞总皂苷的最佳工艺条件为:最佳上样浓度约0.586mg/m L,流速2BV/h,树脂比样液体积为1∶1,动态洗脱实验中,上样后用体积分数分别为50%和70%的乙醇溶液进行分段洗脱,洗脱流速为2BV/h,用量为2~3BV,洗脱得率最高可达到88.9%,洗脱液蒸干后所得固形物中皂苷含量较提取液固形物中皂苷含量提高了约2倍。  相似文献   

19.
研究AB-8大孔树脂对荷叶总黄酮的分离纯化工艺,确定吸附和洗脱条件。结果表明荷叶黄酮物质可以较好的利用AB-8型树脂进行分离纯化,得到最佳吸附工艺为v吸附流速=3 BV/h,c吸附原液=2.08 mg/mL,pH=6及最佳解析工艺为洗脱剂为乙醇溶液,c乙醇=80%,v洗脱流速=1.5 BV/h,V洗脱剂用量=3 BV。经过AB-8型树脂在此工艺条件下对荷叶黄酮进行精制,其纯度可达59.31%。  相似文献   

20.
以提纯荔枝壳黄酮类化合物为目的,通过内部沸腾法得到荔枝壳总黄酮提取液,采用大孔吸附树脂对其进行纯化研究。结果得到AB-8树脂最适合纯化荔枝壳总黄酮,而最优纯化工艺为上样液浓度为0.5 mg/m L,用量为24.0 m L;吸附流速为1 m L/min,洗脱液为80%乙醇,洗脱剂用量为30.0 m L,洗脱流速为1 m L/min。在该工艺条件下,荔枝壳总黄酮的吸附量达5.18 mg/g,解吸率为99.0%,荔枝壳总黄酮的含量从31.4%提高到了82.7%,荔枝壳总黄酮回收率达92.1%。采用AB-8大孔吸附树脂纯化内部沸腾法得到的荔枝壳提取液效果较好,且树脂更方便回收与利用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号