首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究超声辅助酶解制备血管紧张素转化酶(ACE)抑制肽的较优工艺,通过三种超声设备对脱脂玉米胚芽预处理,碱性蛋白酶酶解,酶解液体外模拟胃肠消化,以消化液ACE抑制率和酶解过程中玉米胚芽水解度(DH)为指标对超声预处理和酶解的参数进行单因素逐级优化。实验结果表明,最佳超声工作模式为20~40 kHz聚能式逆流双频交替超声模式;超声工作参数为功率密度120 W/L,超声预处理时间15 min,初始温度30℃,物料浓度5%;酶解条件为加酶量3000 U/g,酶解时间30 min,pH9.0,酶解温度50℃。在此条件下,酶解液的IC50为4.166 mg/mL,比对照组降低了5.08%;胃肠消化液的IC50为3.986 mg/mL,比对照降低了4.44%。制备的酶解产物,经模拟胃肠消化后具有较强的ACE抑制活性。优化获得的制备脱脂玉米胚芽ACE抑制肽的工艺是可行的。  相似文献   

2.
扫频超声波预处理对麦胚蛋白制备ACE抑制肽的影响   总被引:1,自引:0,他引:1  
研究了扫频式超声波预处理对小麦胚芽蛋白制备ACE抑制肽的影响。以ACE抑制活性和水解度为指标,为了提高蛋白质酶解制备ACE抑制肽的反应效率,改善酶解物的ACE抑制活性,考察了超声频率、扫频周期、上、下振板间距、超声时间和料液浓度对小麦胚芽蛋白预处理效果的影响。试验结果表明,在超声波总功率600 W/30 L、料液初始温度35℃和超声波每工作250 s间歇5 s的前提下,扫频式超声波预处理麦胚蛋白的最佳条件是:上、下振板的超声波频率分别为(24±2)k Hz和(68±2)k Hz、扫频周期170 ms、振板间距5 cm、超声波时间140 min、料液质量浓度1.0 g/100 m L。在此条件下,酶解产物的ACE抑制率可达到36.50%,半数抑制剂浓度IC50为0.53 mg/m L,产物转化率77.5%±2.8%。超声波预处理对麦胚蛋白的水解度和酶解产物的转化率没有明显影响,而使其水解产物的ACE抑制活性显著提高。扫频式超声波的预处理效果优于定频式超声波。  相似文献   

3.
王珂  马海乐  李景  熊建  刘潇 《食品工业科技》2018,39(9):11-15,22
旨在研究不同工作模式的超声预处理对玉米胚芽蛋白酶解制备血管紧张素转换酶(Angiotensin-I Converting Enzyme,ACE)抑制肽的影响。以蛋白转化率和高活性肽占比为指标,利用聚能逆流双频、发散三频和对振双频的超声设备,对玉米胚芽粕进行预处理,得到最优的超声预处理模式;采用单因素逐级优化法来确定最佳超声预处理参数;在最优超声处理条件下,优化酶解反应条件。结果表明分子量在300~1000 Da的多肽ACE抑制活性最高,IC50值为0.78 mg/mL;最优的超声模式为20/40 kHz交替双频,最佳超声预处理参数为功率密度100 W/L、底物浓度为8%、超声时间20 min、超声温度30 ℃,酶解条件为加酶量2000 U/g蛋白、酶解时间2.5 h。在最优条件下,蛋白转化率为85.00%,相比于未超声组的73.01%提高了16.42%;高活性肽占比为29.63%,相比于未超声组的26.00%提高了13.96%。因此,逆流双频超声波辅助酶解法能有效提高蛋白转化率和产物ACE抑制活性,有利于ACE抑制肽的制备。  相似文献   

4.
目的:研究扫频式超声波预处理对玉米醇溶蛋白酶解特性的影响。方法:以ACE抑制活性和水解度为指标,考察扫频超声波对玉米醇溶蛋白制备ACE抑制肽酶解特性的影响;研究经扫频超声处理后,玉米醇溶蛋白二级结构、表面形貌、酶解产物氨基酸组成等特性的变化。结论:扫频超声波预处理玉米醇溶蛋白后,其水解度和酶解液的ACE抑制率显著提高;酶解产物的疏水性氨基酸和支链氨基酸含量大幅度提高。(40±2)k Hz/(68±2)k Hz组合双频扫频超声波预处理后,玉米醇溶蛋白酶解液的ACE抑制率为43.7%,与未超声对照组相比提高了1.21倍。玉米醇溶蛋白经超声处理后其二级结构发生变化;原子力显微镜对其表面形貌分析表明,双频扫频超声处理使玉米醇溶蛋白颗粒迅速疏松、细化,出现分子自组装聚集现象。  相似文献   

5.
研究逆流超声预处理大米蛋白对其碱性蛋白酶酶解制备血管紧张素转换酶(Angiotensin-I Converting Enzyme,ACE)抑制肽的影响。首先从米渣中提取大米蛋白,以ACE抑制率为主要指标,水解度为辅助指标,运用单因素逐级优化法对酶解反应的底物浓度、时间、温度、加酶量和pH进行参数优化,在此基础上筛选逆流超声模式的最佳超声参数。结果表明最佳酶解参数为底物浓度30 g/L、加酶量(E/S)7.5%、温度50 ℃、pH8.5和酶解时间60 min,此时酶解产物ACE抑制率为45.59%,水解度为21.49%。最佳超声参数为超声频率20 kHz、功率密度170 W/L、时间12.5 min。此时酶解液ACE抑制率达72.24%,水解度为21.64%,相较于未超声组ACE抑制率提高了57.42%,相较于传统超声组,ACE抑制率提高了11.36%。结果表明逆流超声波辅助酶解法能有效提高酶解效率、减少能耗、促进ACE抑制肽制备。  相似文献   

6.
采取逆流聚能式超声波预处理技术提高谷朊蛋白酶解制备ACE抑制肽的效率。以谷朊蛋白酶解产物的ACE抑制率为指标,通过Box-Behnken响应面试验设计,建立逆流超声预处理谷朊蛋白的数学模型,优化技术参数。利用原子力显微镜、紫外光谱、荧光光谱、差示量热扫描仪对超声预处理后蛋白结构性质进行分析。结果表明,在超声波频率20 k Hz、功率446 W条件下,逆流超声预处理谷朊蛋白制备ACE抑制肽模型的最优条件为:脉冲超声工作时间4 s、间歇时间3 s、料液初始温度30℃、预处理时间30 min。在最优条件下,ACE抑制率为77.235%,IC50值为0.41 mg/m L,分别比未超声预处理的对照组提高了29.8%,降低了36.92%。结构及热特性分析表明,超声预处理改变了谷朊蛋白的微观形貌,使其表面粗糙度变大;蛋白分子发生了伸展,高级结构改变;热转变温度及热焓值下降。形貌、结构及热特性的变化表明超声波预处理使谷朊蛋白有利于酶解反应的进行。  相似文献   

7.
为进一步提高玉米胚芽脱脂粕的酶解效率,以玉米胚芽粕为原料,酶解前期对其进行超声波预处理,然后在碱性蛋白酶和风味蛋白酶最适条件下分步酶解,并以其水解度、可溶性蛋白含量和抗氧化活性为指标,通过选取不同的超声功率、超声时间和超声温度,并采取单因素和正交试验比较酶解过程中的变化趋势,选择最优预处理条件。试验结果表明:在55℃下,以214 W的超声功率酶解玉米胚芽脱脂粕30min后,玉米胚芽脱脂粕水解物的水解度、可溶性蛋白含量、抗氧化活性分别为36.58%、21.06mg/mL、514.67U/mL。  相似文献   

8.
扫频超声处理对玉米醇溶蛋白酶解特性的影响   总被引:1,自引:0,他引:1  
为了探索扫频超声技术促进蛋白质酶解反应的效果,提高酶解产物的血管紧张素转换酶(ACE)相对抑制活性,利用扫频超声处理玉米醇溶蛋白,进行单因素考察来寻找最佳扫频超声工作模式、超声预处理参数和最佳酶解条件.在最佳的超声预处理及最佳的酶解条件下,ACE抑制率为48.48%、水解度为11.20%,酶解产物的IC50值为3.77mg/L,比常规酶解(无超声处理)降低了31.20%,产品得率为66.15%,比常规酶解提高了14.39%.这表明扫频超声预处理能够有效地促进玉米醇溶蛋白的酶解反应,提高产物的ACE相对抑制活性.  相似文献   

9.
为了探寻一种多模式超声高效促进克氏原螯虾酶解效果的方法,分别采用双频探头式超声波和三频发散式超声波对克氏原螯虾进行预处理,对比研究了多模式超声预处理对克氏原螯虾酶解效果的促进作用。通过单因素实验得到探头式双频超声设备的最佳频率模式为20/28 kHz双频顺序超声,三频发散式超声波设备的最佳频率为20/40 kHz双频顺序超声。在此基础上,通过三因素三水平的响应面实验对超声预处理条件进行改进,并建立相应回归方程,优化试验以获得最佳的超声预处理条件。结果表明:双频探头式超声设备的最佳处理条件为:超声功率为250 W,时间为10 min,温度为35 ℃,此时克氏原螯虾的水解度为38.98%;三频超声波设备的最佳处理条件为:超声功率为250 W,时间为40 min,温度为40 ℃,此时克氏原螯虾的水解度为46.12%。实验结果表明多模式超声可以有效提高克氏原螯虾酶解效果。  相似文献   

10.
超声波辅助酶解脱脂小麦胚芽制备抗氧化肽的研究   总被引:3,自引:2,他引:1  
研究了超声波辅助酶解脱脂小麦胚芽对酶解产物抗氧化性的影响.在单因素实验基础上,通过响应面法考察了超声功率、超声时间和超声温度对酶解产物的1,1-二苯基-2-苦基肼(DPPH)清除率的影响.结果表明,最佳的超声酶解条件为:超声功率214 W,超声时间3 min,超声温度25 ℃.此时酶解产物的DPPH清除率理论值为62.4%,实际的清除率达到61.2%.  相似文献   

11.
运用超声波协同双酶复合酶法水解米渣蛋白制备ACE抑制肽。超声波预处理后米渣蛋白水解物ACE抑制活性显著上升,碱性蛋白酶水解产物ACE抑制活性最强。通过单因素分析和响应面优化,得出最优水解条件为:超声功率1 000W,超声时间25min,酶解时间2.5h,料液比1∶8,加酶量3 000U/g。在此基础上复合中性蛋白酶水解,水解时间缩减至2.0h。水解产物通过超滤以及Sephadex G-25凝胶层析后,得到一分子量为338u,最强ACE抑制活性IC_(50)为116μg/ml组分P2。  相似文献   

12.
为了提高麦胚分离蛋白酶解产物的降血压活性,采用超声波处理麦胚分离蛋白。研究了超声波功率对麦胚分离蛋白的溶解度、表面疏水性、荧光光谱、巯基含量变化、水解度和酶解产物对血管紧张素转换酶(ACE)相对抑制活性的影响。结果表明:经超声波处理后,小麦胚芽球蛋白的荧光光谱和巯基含量均发生了显著的变化。麦胚分离蛋白的溶解度和表面疏水残基含量随着超声波功率的增加而提高,但当超声功率达到800 W后,增幅趋于平缓。经超声波前处理后,ACE抑制活性明显提高,而麦胚分离蛋白的酶解产物水解度没有明显变化,因此ACE抑制活性的提高是由于蛋白结构的变化造成的。在超声功率800 W时,酶解产物的ACE相对抑制活性提高了41.09%。  相似文献   

13.
以脱脂玉米胚芽粕为原料,初步探索了玉米胚芽粕的单酶水解、双酶分步水解条件,并对酶解产物的抗氧化活性进行了初步研究。确定了玉米胚芽粕水解蛋白的提取工艺参数。采用纤维素酶和碱性蛋白酶对玉米胚芽粕进行两步酶法处理,通过单因素试验和正交试验设计,对提取工艺参数进行优化。结果表明,纤维素酶酶解的最佳工艺为:酶解pH 4.8、酶解时间2.5 h、酶解温度50℃、加酶量0.5%。碱性蛋白酶酶解的最佳工艺为:酶解pH 9.5、酶解时间4.0 h、酶解温度40℃、加酶量5%。在该条件下,玉米胚芽粕水解蛋白的提取率可达到68.48%。初步研究了酶解产物抗氧化活性,包括清除DPPH、羟自由基能力和还原力。结果表明,酶解产物具有较强的还原力,且对DPPH和羟基自由的IC_(50)分别为5.223μg/mL和32.030μg/mL,说明该产物具有较好的抗氧化活性。  相似文献   

14.
为提高蚕蛹蛋白质酶解产物的ACE抑制活性,利用超声波-离子液体耦合法对蚕蛹蛋白质进行预处理。以酶解产物ACE抑制活性为指标,采用单因素结合响应面分析法,研究超声波-离子液体耦合预处理蚕蛹蛋白质的工艺条件,并通过SDS-聚丙烯酰胺凝胶电泳,研究预处理前后蚕蛹蛋白质及其酶解产物相对分子质量的变化。结果表明,各因素对酶解产物ACE抑制活性的影响程度由大到小依次为:液料比、超声波功率、预处理时间。确定最佳预处理工艺条件为:液料比27.2 mL/g,处理时间31.9 min,超声波功率406.8 W。在此优化条件下,蚕蛹蛋白质酶解产物的ACE抑制率为75.7%(IC50=0.071 mg/mL)。与未处理、超声波预处理的相比,超声波-离子液体耦合预处理在制备蚕蛹蛋白质ACE抑制肽上具有明显优势。超声波-离子液体耦合预处理后,蚕蛹蛋白质的分子质量无明显变化,但其酶解产物的分子质量(1.43 ku)变小。  相似文献   

15.
以水解度和感官评分为指标,筛选适宜的蛋白酶,并采用响应面法优化酶法制备小麦胚芽鲜味肽工艺;考察了小麦胚芽鲜味肽不同组分美拉德反应产物的鲜味。结果表明:风味酶是制备小麦胚芽鲜味肽最佳水解用酶,其最优酶解条件为加酶量3 000 U/g、底物浓度26 g/L、自然pH、酶解温度50℃、酶解时间3 h。在此条件下酶解产物感官评分为6.20,水解度为41.02%,5~10 kDa小麦胚芽酶解产物组分美拉德反应产物的感官评分最高。  相似文献   

16.
超声波协同水酶法提取小麦胚芽油的研究   总被引:3,自引:1,他引:3  
采用水酶法结合超声波预处理提取小麦胚芽油,重点对酶解条件进行优化。得到适宜酶解条件为:料液比1:14、碱性蛋白酶添加量1.5%、酶解温度50℃、时间2h、酶解pH 11;此时的小麦胚芽提油率为71.92%。在此基础上采用超声波预处理以提高小麦胚芽提油率,适宜超声波预处理条件为:超声渡功率500W、超声时间4min,此时的小麦胚芽提油率为82.20%,比未经起声波预处理的高出10.28%。  相似文献   

17.
为进一步提高辣木籽蛋白资源的开发利用,采用盐提法提取辣木籽蛋白,再采用超声波辅助酶法制备辣木籽ACE抑制肽。以水解度和ACE抑制率为评价指标,通过单因素实验探究超声波功率、超声酶解时间、超声酶解温度及料液比对制备ACE抑制肽的影响,采用响应面法对制备工艺条件进行优化。结果表明:超声波辅助酶法制备辣木籽ACE抑制肽的最佳酶解工艺条件为碱性蛋白酶添加量5.5 mg/mL、pH 9、超声波功率500 W、超声酶解时间1.7 h、超声酶解温度55℃、料液比1∶45,在此条件下制备的酶解物ACE抑制率达到78.32%,水解度为7.78%。以辣木籽为原料制备ACE抑制肽作为功能性蛋白肽产品,可有效提高辣木籽蛋白资源的开发利用。  相似文献   

18.
研究不同的超声频率预处理对大米蛋白酶解产物及其胃肠道模拟消化产物的ACE抑制活性的影响,同时研究不同阶段大米蛋白酶解产物的多肽含量。研究表明,单频、双频顺序及双频同步超声虽然对大米蛋白的水解度均无显著影响(P0.05),但是均可以显著提高酶解产物的ACE抑制活性(P0.05)。单频超声20 kHz、双频顺序超声20/35 kHz及双频同步超声20/35 kHz对ACE抑制活性的影响最为明显,与对照组相比,分别增加了35.68%,66.24%和56.17%。双频超声对ACE抑制活性的提高幅度明显高于单频超声,且顺序超声优于同步超声。经胃模拟消化后,不同超声频率预处理均能显著提高蛋白酶解产物的ACE抑制活性。然而过肠模拟消化以后,与对照组相比,不同超声频率预处理对蛋白酶解产物的ACE抑制活性显著升高(P0.05),然而与胃消化的结果相比则显著降低(P0.05)。多肽含量测定结果表明,与对照相比,超声显著增加胃模拟消化后大米多肽的含量(P0.05),而对于肠模拟消化后的大米蛋白含量显著降低(P0.05)。结论:不同超声频率预处理均可促进大米蛋白酶解物及胃模拟消化后的ACE抑制活性;大米蛋白酶解产物经过胃消化后的多肽含量增加,而经过肠消化后的多肽含量反而降低;双频顺序超声效果优于双频同步超声,更优于单频超声。  相似文献   

19.
超声预处理大米蛋白对其酶解产物ACEI活性的影响   总被引:1,自引:0,他引:1  
以酶解产物ACEI活性为指标筛选最佳超声预处理模式,在最佳的超声波模式条件下采取单因素逐级优化方法优化超声预处理工艺参数。结果表明:采取20/28/40 kHz同步模式,在超声时间7.5 min、温度40℃、工作间歇比6∶3 (s/s)和功率密度66.7 W/L条件下,大米蛋白酶解所得产物ACEI活性最高,为48.39%,与对照组相比提高了35.20%。说明发散型三频超声对大米蛋白进行预处理能有效的提高酶解产物的ACEI活性。  相似文献   

20.
该试验采用超声波辅助酶解法,研究豆粕血管紧张素转化酶(angiotensin-converting enzyme,ACE)抑制肽的制备工艺条件,并通过响应面优化单因素试验结果。选用5种蛋白酶分别水解豆粕,以ACE抑制率为指标,挑选出最适蛋白酶,结果表明:碱性蛋白酶的ACE抑制率最大,所以选择碱性蛋白酶进行酶解。为提高ACE抑制率,加入超声波预处理,最终确定最佳工艺条件为在超声温度73℃、超声时间39 min、料液比1∶6(g/mL)条件下,再加入7.20%碱性蛋白酶水解3.6 h,在此条件下所制备的豆粕ACE抑制肽的ACE抑制率为61.02%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号