首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
超声波辅助酶结合碱法提取薯渣纤维素的工艺研究   总被引:1,自引:0,他引:1  
以甘薯渣为原料,采用超声波辅助酶结合碱法从甘薯渣中提取纤维素。通过单因素及正交实验,确定了最佳提取工艺条件。结果表明,在超声波功率为105W辅助下,提取薯渣纤维素的最佳工艺条件为,α-淀粉酶的用量0.6%、酶解时间45min、氢氧化钠浓度7%和碱解时间90min,在此条件下产品纤维素的含量为80.09%,并测定其持水性和溶胀性分别为5.34g/g和10.53mL/g,均优于酶结合碱法,是一种可行,高效的方法。  相似文献   

2.
为了提高姜渣的利用率,增加企业的经济效益,试验以姜渣为原料,采用超声波辅助法提取姜渣中的不溶性膳食纤维。主要通过对α-淀粉酶用量、超声时间、NaOH浓度、碱解温度和碱解时间这5个因素进行单因素试验,并通过正交试验进行优化,确定最佳的提取工艺。结果表明,姜渣中不溶性膳食纤维的最佳提取条件为:α-淀粉酶用量0.3%,超声时间40 min,NaOH浓度6%,碱解温度35℃,碱解时间55 min;在这种条件下,不溶性膳食纤维的得率达到54.14%。  相似文献   

3.
陶永霞  周建中  武运  于小会 《食品科学》2009,30(20):118-121
以枣渣为原料,采用酶法水解淀粉,碱法水解蛋白质、脂肪的提取方法提取枣渣可溶性膳食纤维,探讨加酶量、酶解时间、碱解pH值、碱解时间、碱解温度等因素对膳食纤维得率的影响。通过正交试验确定了酶碱法制备枣渣可溶性膳食纤维的最佳工艺条件为:糖化酶加酶量为0.4%,纤维素酶加酶量为0.5%、酶解时间60min、碱解pH值为12、碱解温度70℃、碱解时间90min,在此条件下枣渣可溶性膳食纤维得率达11.32%,持水力和溶胀性分别达到848.68%和9.26ml/g。  相似文献   

4.
以姜渣纤维素为原材料,通过超声波辅助酸解的方法对姜渣纤维素进行纳米化处理,得到纳米姜渣纤维素。通过对超声波功率、硫酸浓度、酸解温度、酸解时间4个影响因素进行单因素试验、正交试验,确定其最佳的工艺条件,并通过透射电镜对其表观结构进行进一步分析。研究结果表明,制备纳米姜渣纤维素的最佳工艺参数为超声波功率135 W、硫酸浓度60%、酸解温度50℃、酸解时间90 min,在此条件下纳米姜渣纤维素的产率为32.97%,其表观为针状,细小均匀,直径(5~10)nm,长度500 nm~1μm,达到纳米纤维素尺寸级别,这为纳米纤维素的深入研究提供理论参考。  相似文献   

5.
采用盐酸水解法制备柚皮微晶纤维素,通过单因素试验,分别考察HCl浓度、酸解时间、酸解温度对柚皮微晶纤维素制备工艺的影响。在此基础上,通过正交试验优化制备工艺条件,并确定了柚皮微晶纤维素制备工艺的最佳条件:HCl体积分数为8%、酸解温度为60℃、酸解时间为80 min。利用红外光谱、X衍射、扫描电镜对柚皮微晶纤维素晶型结构、微观形态进行表征。柚皮微晶纤维素为纤维素I型结构,相对结晶度为71.26%,表面形态粗糙,呈长杆状。  相似文献   

6.
利用纤维素酶的酶解作用对菠萝皮渣多糖的提取工艺进行了研究。研究了料液比、加酶量、酶解温度和酶解时间对菠萝皮渣多糖的提取率的影响,并通过正交试验确定纤维素酶法提取菠萝皮多糖的最佳工艺。正交试验结果表明提取菠萝皮渣多糖的工艺最佳条件为酶解温度48℃、酶解时间100min、加酶量0.8%。在该条件下菠萝皮渣多糖的实际提取率为26.3%。该方法与其他类似提取方法相比较具有成本低,速度快,提取率高的优点。  相似文献   

7.
对干木薯渣进行物理粉碎,再用α-淀粉酶和糖化酶(中温淀粉酶60℃~70℃)、脂肪酶和风味蛋白酶除去木薯渣中的淀粉、脂肪和蛋白质,得到纯净的木薯膳食纤维并用超声波辅助脱色;通过单因素试验得到了木薯渣化学成分去除率和膳食纤维脱色的最佳工艺条件。化学成分去除的最佳工艺条件为:当α-淀粉酶和糖化酶的质量比1∶6,用量为0.6%,酶解pH=7,酶解时间为120 min,酶解温度为60℃时,淀粉去除率最高;当脂肪酶用量0.21%,酶解pH=7,酶解时间90 min,酶解温度为50℃时,脂肪去除率最高;当风味蛋白酶用量0.6%,酶解pH=4,酶解时间150 min,酶解温度为35℃时,蛋白质去除率最好。脱色的最佳试验条件为:当H2O2浓度为10%,漂白时间40 min,超声功率为60 W,漂白温度50℃时,漂白效果最好。  相似文献   

8.
微波辅助提取苹果渣可溶性膳食纤维   总被引:2,自引:0,他引:2  
刘素稳  郭朔  刘畅  李军  高海生   《中国食品学报》2010,10(5):152-159
以苹果渣为原料,探讨微波辅助化学法提取可溶性膳食纤维的工艺条件。试验结果表明微波-碱法制备可溶性膳食纤维的最佳工艺条件是:液料比1︰65,pH 11.5,微波功率480 W,微波辐射时间120 s,在此条件下可溶性膳食纤维得率为20.98%。微波-酸法制备可溶性膳食纤维的最佳工艺条件是:液料比1︰65,pH 1.5,输出功率800 W,微波辐射时间100 s,在此条件下可溶性膳食纤维得率为19.84%。与传统方法相比,微波辅助能大大加快组织的水解,使可溶性膳食纤维的提取时间由60 min缩短为2 min。扫描电镜和X射线衍射分析表明微波对苹果渣纤维表面的微结构有破坏作用。  相似文献   

9.
甘薯渣中含有丰富的纤维素成分,利用超声波辅助酶水解,碱解和酸解的方法提取纤维素,将甘薯渣中的纤维素利用DMAc/Li Cl均相体系与辛烯基琥珀酸酐对其进行改性。该研究以纤维素为原料,采用CCD中心组合试验设计研究m_(DMAP)/m_(纤维素)、n_(OSA)/n_(纤维素)、反应温度、反应时间4个因素对辛烯基琥珀酸酐纤维素酯取代度的影响,并对辛烯基琥珀酸酐纤维素酯取代度的工艺条件进行了优化。结果表明,对辛烯基琥珀酸酐纤维素酯合成的影响大小顺序为m_(DMAP)/m_(纤维素)n_(OSA)/n_(纤维素)反应温度反应时间,从回归模型方差分析表中求得最佳工艺条件为m_(DMAP)/m_(纤维素)=0.48,温度78.64℃,时间186.52 min,n_(OSA)/n_(纤维素)=1.93,此条件下取代度预测值为0.385,验证试验预测精度高达94.81%,并对辛烯基琥珀酸酐纤维素酯进行红外光谱、扫描电镜等研究,以探讨其基团分布、表观形貌等特征。  相似文献   

10.
目的 优化藕渣纤维素的提取工艺,并通过系列表征证明该纤维素的形貌结构及理化特性。方法 以纤维素的含量为指标, 以NaOH浓度、Na2SO3浓度和提取温度为考察因素进行单因素实验, 结合Box-Behnken 响应面实验对提取工艺进行优化。并对提取纤维素进行组分分析和形貌结构表征。结果 响应面优化结果显示, NaOH浓度、Na2SO3浓度和提取温度对藕渣纤维素的含量均具有显著影响(P<0.05)。确定最佳提取工艺条件为NaOH浓度1.25 M、Na2SO3浓度1 M、提取温度80 ℃,此条件下纤维素含量84.31%,其中淀粉含量为0.8%、蛋白质含量为2.75%。红外数据表明纯化样品中半纤维素和木质素的特征峰明显减弱,具有典型的纤维素峰,证明了有效提取了纤维素样品;X射线衍射结果表明藕渣和提取的纤维素衍射曲线差别较大,且藕渣纤维素的衍射峰位置与已报道纤维素基本一致,证明所使用的提取方法并未改变藕渣纤维素的结晶结构;扫描电镜分析表明木质素和半纤维素被除去后纤维素裸露表面发生聚集形成褶皱结构,热分析表明藕渣纤维素的最佳热分解温度为265 ℃,所提取的纤维素具有较好的热稳定性。 结论 该碱法提取工艺方法简单高效,为藕渣等农产品加工副产物的开发利用提供了理论依据。  相似文献   

11.
为了提高甘薯加工副产品的高值化利用,以甘薯渣纤维素为原料,应用超声波辅助酸法制备纳米薯渣纤维素。通过对超声波功率、酸体积分数、酸解温度和酸解时间4个影响因素进行单因素及正交试验,获得了纳米薯渣纤维素的最佳制备条件,并通过透射电镜和X-射线衍射对其进行进一步的分析。结果表明:纳米薯渣纤维素制备的最佳工艺参数为超声波功率120 W、酸体积分数65%、酸解温度55℃、酸解时间120 min,此条件下纳米薯渣纤维素的产率为42.85%;纳米薯渣纤维素的形态表现为不规则球状,粒径在20~40 nm范围内,并且其仍具有纤维素的晶型,结晶度有明显的提高。  相似文献   

12.
酶法提取米渣蛋白工艺的研究   总被引:4,自引:1,他引:4  
以中性蛋白酶作预酶解,再用碱溶法从米渣中提取蛋白质,通过试验确定了米渣预酶解的最佳工艺条件为:305.8u/g米蛋白、酶解pH7.8、酶解温度45℃、酶解时间2h;碱溶时的最佳工艺条件为:碱溶pH,12.5、碱溶温度50%、碱溶时间2h,固液比1:7。在此条件下,产品中米蛋白质量分数为68.7%,米蛋白的提取率为77.2%。  相似文献   

13.
以玫瑰花渣为原料,通过酶-化学法提取膳食纤维,并以可溶性膳食纤维(SDF)得率为评判指标,在单因素试验的基础上通过响应面试验优化提取工艺。结果表明:最佳工艺参数为料液比1∶35(g/mL)、纤维素酶添加量4%(以玫瑰花渣质量为基准)、碱液质量浓度0.045 g/mL、碱解时间60 min,在此条件下玫瑰花渣SDF得率为43.59%。  相似文献   

14.
陈彬  刘永衡  王丽华 《食品工程》2022,(1):43-46+70
以贺兰山东麓赤霞珠葡萄皮渣为原料,以可溶性膳食纤维(SDF)得率为研究指标,采用超声波-微波辅助多酶法提取技术,在单因素试验的基础上,采用正交试验对葡萄皮渣水溶性膳食纤维的提取工艺进行优化。单因素试验结果表明,影响SDF得率的主要因素为酶解温度、微波时间、酶解时间、超声时间。正交试验结果表明,最佳工艺组合参数为:超声时间13 min,微波时间为5 min,酶解时间80 min,酶解温度50℃,此工艺条件下葡萄皮渣SDF得率为20.63%。研究结果为葡萄皮渣的废物利用工业化生产提供了理论依据及数据支撑。  相似文献   

15.
以华南9号食用木薯为原料,对制备木薯饮料的酶解工艺进行优化研究,分别采用耐高温α-淀粉酶和糖化酶对食用木薯浆的液化和糖化工艺进行单因素和正交试验,优选出最佳的食用木薯饮料加工中酶解关键工艺条件。结果表明:液化的最佳条件为耐高温α-淀粉酶用量为80 U/g、酶解温度85℃、酶解时间120 min,在此条件下生产的木薯汁De值最高为30.34%(p0.05);糖化的最佳条件为糖化酶用量240 U/g、酶解温度55℃、酶解时间180min、酶解p H 4.5,此条件下食用木薯饮料可溶性固形物含量最高为9.33%(p0.05)。经双酶联合酶解制备获得的食用木薯饮料风味浓郁,口感细腻、甜度适中,组织状态良好。  相似文献   

16.
研究以麦草秸秆为原料制取微晶纤维素的制备工艺。运用添加乙酸的乙醇法低污染制浆技术,溶出麦草秸秆中的木素、半纤维素等杂质,采用全无氯的臭氧及过氧化氢漂白工艺对粗纤维素进行漂白,然后通过盐酸水解和稀碱处理制备得到微晶纤维素。结果表明,试验制取的微晶纤维素符合合成革用微晶纤维素的标准。在提取粗纤维素过程中催化剂乙酸的最佳用量是2%。水解时间对微晶纤维素产品聚合度的影响较大。麦草秸秆制取微晶纤维素的最佳工艺条件为:液比1:15,水解温度70℃,水解时间90min。碱处理的工艺条件为:碱浓5%,温度80℃,处理时间30min。  相似文献   

17.
以茶渣为原料,采用盐酸水解法制备茶渣微晶纤维素。通过单因素试验研究了酸解时间、酸解温度、盐酸浓度及料液比对微晶纤维素得率、聚合度和结晶度的影响,采用正交试验优化了工艺参数,并运用X-射线衍射和红外光谱对微晶纤维素产品进行表征。试验结果表明:最佳制备工艺条件为酸解温度95℃、盐酸质量分数8%、酸解时间90 min、料液比1∶16(g/mL)。各因素对得率影响的显著性为:酸解温度盐酸浓度酸解时间料液比;在此条件下,茶渣微晶纤维素产品的得率为54.34%,聚合度为128;X-射线衍射和红外光谱分析表明,茶渣微晶纤维素与原纤维素材料结构一致,结晶度达67.77%,晶粒尺寸为3.98 nm,晶型为纤维素Ⅰ型。  相似文献   

18.
以加工红参膏后的废弃物红参渣为原料,采用超声波辅助碱法提取不溶性膳食纤维,通过单因素试验考察了提取时间、提取温度、液固比、碱液浓度等4个因素对红参不溶性膳食纤维得率的影响,在单因素试验基础上,通过响应面分析对提取条件进行优化,确定最佳提取工艺。结果表明,超声波辅助碱法提取红参渣中不溶性膳食纤维的最佳工艺为:提取温度62℃,提取时间80 min,液固比24︰1 mL/g,碱液浓度1.1%。在此条件下,不溶性膳食纤维得率可达57.39%,表明该工艺可用于红参渣中不溶性膳食纤维的提取。  相似文献   

19.
响应面法优化菜籽皮可溶性膳食纤维提取工艺   总被引:1,自引:0,他引:1  
为了探讨酶法和化学法结合提取菜籽皮中可溶性膳食纤维。采用纤维素酶和氢氧化钠提取菜籽皮中的可溶性膳食纤维,研究了酶添加量、酶解时间、碱解pH、碱解时间、碱解温度等因素对膳食纤维得率的影响。在单因素试验的基础上进行响应面试验设计,确定了酶-化学法制备菜籽皮膳食纤维的最佳工艺条件:纤维素酶加酶量为0.4%,酶解时间60 min,碱解pH 13,碱解温度70℃、碱解时间60 min,在此条件下菜籽可溶性膳食纤维得率为7.18%。因此,采用纤维素酶和氢氧化钠相结合的方法提取菜籽皮中的可溶性膳食纤维是切实可行的。  相似文献   

20.
以玉米秸秆为原料,研究其提取制备微晶纤维素的工艺及产品性能。探讨酸解温度、硫酸体积分数、酸解时间对微晶纤维素聚合度及得率的影响,并对微晶纤维素的理化性质进行了分析。结果表明:玉米秸秆微晶纤维素最佳制备工艺条件为:反应温度85℃,硫酸体积分数8%,水解时间90 min,此时制得微晶纤维素聚合度为292,纯度92.6%,得率76.48%,结晶度为74.5%。在此条件下,玉米秸秆微晶纤维素在保留形态结构的同时具有较高的结晶度和热稳定性,具备较好的应用性能和价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号