首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了探讨热风温度对百合热风干制动力学的影响,分别将百合鳞片和百合切丝置于65~85℃的热风干燥箱内进行干制处理,并采用5种常见食品薄层干燥模型对实验数据进行非线性拟合,通过比较评价决定系数(R~2)、卡方(χ~2)和均方根误差(RMSE)等统计数据确定百合薄层热风干燥过程的最优模型。结果表明:百合薄层热风干燥是内部水分扩散控制的降速干燥过程。Page模型是描述百合薄层热风干燥过程的最优模型。不同干燥条件下有效水分扩散系数D_(eff)和活化能Ea的求解结果表明,有效水分扩散系数Deff随热风温度升高而增加,在干制温度范围内,百合切丝有效扩散系数的值在7.73~14.12×10~(-9)m~2/s之间变化,而百合鳞片有效扩散系数的值在4.12~9.49×10~(-9)m~2/s之间变化。对于百合切丝和百合鳞片,活化能Ea分别为30.37和42.42 k J/mol。百合切丝干制能缩短干制时间,减少能量消耗。  相似文献   

2.
研究杏鲍菇切片在不同干制温度(70、80、90℃)和切片厚度(2、4 mm)下的薄层热风干制特性及干制过程数学模型的建立,分析切片厚度和热风干制温度对干制特性的影响。试验结果表明,杏鲍菇切片热风干制的过程以降速干燥为主。杏鲍菇切片热风干制时的水分转移符合Fick's扩散模型。从R~2、χ~2和RMSE三个统计数据分析,Page方程模型与杏鲍菇切片干制过程拟合度较高。  相似文献   

3.
草菇切片热风干制数学模型的建立   总被引:1,自引:0,他引:1  
《中国食品添加剂》2019,(11):108-113
草菇的干燥和储存直接影响草菇的品质,通过研究草菇在不同干燥温度和切片厚度下的干燥动力学特点,从而建立干燥过程中的数学模型,为草菇干燥工艺和过程设计提供基础依据。草菇热风干燥温度为70℃、80℃、90℃,切片厚度为2mm、4mm。结果表明,草菇热风干制过程以降速干燥为主。采用五种常见的薄层干制数学模型对草菇切片的热风干制过程进行描述。通过比较决定系数(R~2)、卡方(x~2)和均方根误差(RMSE),发现Page模型是描述草菇切片热风干制过程的最适模型。此模型测得的水分含量预测值与实际的实验值相差无几,可以用来描述草菇干制过程。  相似文献   

4.
目的:提高规模化生产的哈密瓜品质,缩短干燥周期。方法:以不同漂烫时间(0.5,1.0,1.5,2.0,2.5 min)、浸渍液(0.1%,0.2%,0.3%,0.4%,0.5%柠檬酸溶液)预处理哈密瓜切片,并分别研究不同热风温度(35,45,55,65,75℃)、热风速度(0.5,1.0,1.5,2.0,2.5 m/s)和切片厚度(2,4,6,8,10 mm)条件下的哈密瓜切片热风干燥特性和水分扩散系数,拟合不同薄层干燥数学模型。结果:0.4%柠檬酸预处理后得到品质最优的干制产品,热风温度和切片厚度对切片干燥影响较为显著,哈密瓜切片无恒速干燥阶段,有效水分扩散系数为1.1348×10-7~4.9080×10-7 m2/s,活化能为28.15 kJ/mol。结论:哈密瓜切片的最佳热风干燥工艺为热风温度55℃、热风速度2.0 m/s、切片厚度6 mm,Page模型具有最高的R2值和最小的均方根误差,更适于评估和预测哈密瓜热风干燥的水分去除规律。  相似文献   

5.
黄芪切片热风干燥特性及动力学模型研究   总被引:1,自引:0,他引:1  
分别研究热风温度(40,50,60℃)、风速(0.4,0.8,1.2m/s)和切片厚度(3,6,9mm)对黄芪切片热风干燥曲线、有效水分扩散系数、复水比和色差的影响,利用Weibull分布函数对试验数据进行拟合,并计算黄芪切片热风干燥活化能。结果表明:黄芪切片热风干燥属于降速干燥过程,热风温度和切片厚度对干燥时间影响较大,干燥过程服从Weibull分布函数(R~2=0.995 1~0.999 2);有效水分扩散系数为0.321×10~(-7)~1.178×10~(-7) m~2/s,热风温度和切片厚度对其影响较大,呈正相关性;干燥活化能为56.49kJ/mol,说明干燥操作较易实现;黄芪切片干制品复水比为2.02~2.43,随热风温度的升高而减小,随切片厚度的增加而增大;色差为1.96~7.01,随热风温度和风速的增加而增大,随切片厚度的增加而减小。  相似文献   

6.
探讨不同干燥温度和不同切片厚度条件下番木瓜的热风干燥特性。通过9种数学模型对番木瓜热风干燥试验数据进行拟合,结果表明:同大多数农产品干燥一样,番木瓜热风干燥主要为降速过程。不同干燥温度和物料厚度番木瓜热风干燥的水分有效扩散系数Deff的变化范围分别是1.798 4×10-8~3.323 3×10-8,0.579 3×10-8~2.852 2×10-8 m2/s,由此可以看出番木瓜热风干燥的水分有效扩散系数随着干燥温度和物料厚度的增大而增大;Page模型是番木瓜热风干燥过程的最适模型,平均R2值、SSE值、RMSE值和X2值分别为0.998 1,0.003 3,0.012 4,0.000 2。经回归分析,得到温度、厚度与有效水分扩散系数Deff的关系表达式。研究结果可以为生产实践中预测番木瓜热风干燥的水分变化提供参考。  相似文献   

7.
分析热风温度(30~45℃)、热风风速(0.5~2 m/s)等因素对无核白葡萄干燥特性的影响,计算不同条件下水分有效扩散系数(Deff)及干燥活化能(Ea),再采用4种薄层干燥模型对不同试验条件进行非线性拟合,并比较不同条件的R~2、RMSE和χ~2值。结果表明:在干燥过程中,随着干燥温度及风速的升高,Deff也随之升高,利用阿伦尼乌斯公式计算出无核白葡萄的干燥活化能为22.95kJ/mol。通过4种模型的R~2、RMSE和χ~2值比较,Parabolic模型的拟合结果最好,最能描述葡萄干燥过程中水分比的变化规律,可为无核白葡萄干燥生产提供理论依据。  相似文献   

8.
为了提高猕猴桃切片制干品质、缩短干燥时间,采用流化床干燥技术对其进行干燥,研究温度(55,65,75,85℃)、风速(1.5,2.5,3.5,4.5m/s)和厚度(5,10,15mm)对猕猴桃切片热风干燥曲线、水分有效扩散系数以及干燥活化能的影响。结果表明:猕猴桃切片的整个干燥过程属于降速干燥,水分有效扩散系数为1.29639×10-9~4.58994×10-9 m2/s,且随温度、风速的增大而升高,随切片厚度的减少而增大;猕猴桃切片活化能为23.03kJ/mol。对10种常见的干燥动力学模型进行拟合发现,Logarithmic模型效果最佳。  相似文献   

9.
在本文中,研究了热风温度(60、70、80、90℃)和热烫处理对油豆角丝热风干制动力学参数的影响。结果表明:油豆角丝薄层热风干燥是内部水分扩散控制的降速干燥过程,热风温度升高和热烫处理可显著加速干制速率,缩短干制的时间(p0.05)。采用Newton,Page,Two term exponential,Henderson and Pabis,Approximation of diffusion等5种常见食品薄层干燥模型对干燥实验数据进行非线性拟合回归分析,结果显示Page模型具有最大的决定系数(R~2)、最小的卡方(χ~2)和均方根误差(RMSE),该模型能较准确地表达和预测油豆角丝热风干燥过程的水分变化规律。热烫处理和热风温度增加促使D~(eff)的增加,在干制温度范围内,水分有效扩散系数(D~(eff))的值在0.7981~2.5724×10~(-9)m~2/s之间变化。通过阿伦尼乌斯公式计算出的热烫和非热烫的油豆角丝的活化能(E_a)分别为32.03、37.62 kJ/mol。研究结果可以为油豆角丝干制工业化生产和控制提供理论依据。  相似文献   

10.
以山药为原料,研究其红外干燥特性及数学模型。通过实验收集了不同切片厚度和干燥温度下,山药片水分比(MR)随干燥时间(t)的变化数据,得到了山药片的干燥曲线,并计算了干燥过程中的有效水分扩散系数(Deff)和干燥活化能(Ea)。实验结果表明,干燥温度(T)和切片厚度(L)对山药红外干燥特性有较大影响,温度越高,切片厚度越薄,山药的干燥速率(DR)越快,干燥时间越短。同时,通过拟合计算发现,在14种干燥模型中Modified Henderson and Pabis的预测值与实测值比较吻合,能够更好地反映干燥过程。在实验温度范围内,Deff在(2.1670×10~(-10)~46.369×10~(-10))m~2/s之间,随着干燥温度和切片厚度的增加而增加。山药片的Ea计算结果是30.2697 k J/mol,表明利用红外干燥技术从山药中除去1 kg水需要消耗大约1681.65k J的能量。  相似文献   

11.
龙眼果肉微波干燥特性及干燥模型研究   总被引:1,自引:0,他引:1  
叶欣  黄晓兵  胡洋  冉旭 《食品科技》2012,(12):67-71
探讨不同微波功率密度(P/m)对龙眼果肉干燥过程中水分比MR、失水速率及干燥时间的影响,结果表明龙眼果肉微波干燥是内部水分扩散控制的降速干燥过程。采用7种常见食品薄层干燥模型对试验数据进行非线性拟合,通过比较决定系数R2、均方根误差RMSE、卡方χ2,结果表明Midilli模型是表述龙眼果肉微波干燥的最优模型。对不同微波功率密度下的有效扩散系数Deff及活化能Ea进行求解,结果表明有效扩散系数Deff随功率密度的增大而增大,Deff的值介于0.7057×10-9~1.8×10-9m2/s之间,平均活化能为1.266W/g。  相似文献   

12.
食用槟榔热风干燥特性及动力学模型   总被引:1,自引:0,他引:1       下载免费PDF全文
本文采用Fick第二扩散定律与槟榔干燥的数学模型研究了食用槟榔在不同干燥温度下的热风干燥特性、水分有效扩散系数、表观活化能等参数与干燥动力学方程之间的相互关系。结果表明:槟榔在70℃与75℃的干燥曲线有显著性差异(p0.05),槟榔热风干燥是内部水分扩散控制的降速干燥过程;槟榔水分扩散系数变化范围:青果Deff=6.45×10~(-9)~1.17×10~(-8) m~2/s,烟果Deff=7.47×10~(-9)~1.21×10~(-8) m~2/s;干燥表观活化能:青果Ea=30.32 kJ/mol,烟果Ea=23.38 kJ/mol。单项扩散模型与Page模型的常数项系数受温度影响显著(p0.05);单项扩散干燥模型为描述食用槟榔的最佳数学模型(青果:R2avg=0.97,RMSEavg=0.023;烟果:R2avg=0.98,RMSEavg=0.025);65℃~85℃热风干燥条件下的干燥模型可表述为:MR青果=(2×10~(-4)T2-0.037T+2.54)exp-(3×10~(-5)T3-0.0064T2+0.51T-13.06)t;MR烟果=(3×10~(-4)T2-0.062T+3.67)exp-(-4×10~(-4)T2+0.061T-2.027)t,可为其干燥工艺的控制提供技术依据。  相似文献   

13.
马铃薯片热风对流干燥模型与特性   总被引:1,自引:0,他引:1  
为了描述马铃薯片热风对流干燥的特性,在对流热风干燥试验装置中进行了马铃薯片薄层干燥试验,研究了干燥温度对干燥过程的影响,用数学模型关联了试验的水分比与时间,计算了不同温度下的水分有效扩散系数,并拟合了其与干燥温度的关系。结果表明:干燥温度对干燥过程有明显影响;在所用的模型中Logarithmic模型能较好地描述马铃薯片热风对流干燥过程;厚度3 mm的马铃薯片,在风速0.95 m/s时,风温从50℃升高到80℃,水分有效扩散系数从1.73×10~(-9) m~2/s增大到3.33×10~(-9) m~2/s,并符合阿累尼乌斯方程,活化能为20.16 kJ/mol。  相似文献   

14.
为提高马铃薯片的热风干燥效率及品质,控制其干燥过程中的收缩变形,本文研究了不同热风温度(45、55、65、75 ℃)和切片厚度(3、5、7、9 mm)对马铃薯片热风干燥特性曲线、有效水分扩散系数及活化能等指标的影响。结果表明,干燥室内热风温度越高、马铃薯切片厚度越小时,干燥速率越快。在研究范围内,马铃薯片的有效水分扩散系数在5.02×10?10~11.53×10?10 m2/s范围内,其值随热风温度升高或切片厚度减小而增大。此外,研究发现Weibull分布函数能够很好地描述马铃薯片的降速干燥过程和收缩动力学模型。通过Arrhenius方程计算得到马铃薯片的干燥活化能和收缩活化能分别为27.35和46.44 kJ/mol,马铃薯片干燥比收缩消耗活化能少。本研究为马铃薯片在热风干燥加工中水分迁移和体积收缩变化的预测提供了理论依据和技术支撑。  相似文献   

15.
白萝卜薄层热风干燥特性及其数学模型   总被引:2,自引:0,他引:2  
黄珊  王修俊  沈畅萱 《食品与机械》2017,33(8):137-143,193
以新鲜白萝卜为原料,研究在不同的热风温度、热风风速和切片厚度条件下,白萝卜的热风干燥特性。通过试验数据拟合,比较7种数学模型在白萝卜热风干燥过程中的适用性。结果表明:白萝卜热风干燥以降速过程为主,无明显的恒速阶段。干燥温度、切片厚度对白萝卜的干燥速率影响较大,风速影响较小。干燥温度越高、切片厚度越薄、风速越快,干燥用时越短。通过比较各模型的相关系数(R~2)、卡方值(χ~2)和均方根误差(RMSE),结果显示Page模型的拟合效果最好,该模型的R~2为0.997 6、χ~2为2.615×10~(-4)、RMSE为0.014 6。且用模型外的试验数据进行验证,也表现出较好的拟合度。白萝卜的有效水分扩散系数(Deff)为7.560×10~(-10)~2.130×10~(-9),随着干燥温度、风速和切片厚度的增加而增大。白萝卜的干燥活化能为26.34kJ/mol。此外,还对白萝卜片干燥前后的色差进行了测定和分析,结果表明:在50~80℃时,随着温度的增加,干燥成品的L~*值逐渐降低,而b~*、a~*以及总色差ΔE~*值呈升高的趋势。  相似文献   

16.
《食品与发酵工业》2017,(8):115-122
为了实现魔芋的规模化真空干燥,缩短干燥时间,提高脱水制品的品质,降低生产能耗和成本。该文采用真空干燥技术将其干燥至安全含水率15%,选取温度(50、60、70℃)和真空度(0.04、0.05、0.06 MPa)为试验因素进行研究,考察了温度和真空度对魔芋切片干燥水分比MR和干燥速率DR的影响、水分扩散系数以及干燥活化能。利用6种常见食品干燥数学模型对实验数据进行非线性拟合,通过比较评价决定系数R~2、卡方χ~2、和标准误差eRMSE以及平均相对误差E得到较优模型模型并与BP神经网络模型进行对比检验。结果表明,魔芋切片真空干燥是内部水分扩散控制的降速干燥过程;魔芋真空干燥最佳动力学模型为BP神经网络模型,模型平均相对误差E为1.32%;在不同干燥条件下对魔芋有效扩散系数Deff和活化能Ea进行求解表明,有效水分扩散系数Deff与真空度和温度成正比,平均干燥活化能E_a为28.96 k J/mol。  相似文献   

17.
《食品与发酵工业》2017,(1):130-134
为了研究枸杞在不同热风干燥温度下的干燥特性,改善其干制品质,以宁夏枸杞为原料,对其进行不同温度的热风干燥处理,分析它的干燥特性和品质变化,结果表明:枸杞干制过程由升速、降速和恒速3个阶段组成,以降速阶段为主要过程;枸杞热风干燥水分有效扩散系数在0.76×10~(-10)m~2/s和1.98×10~(-10)m~2/s之间,且温度越高系数越大,枸杞干燥活化能为61.36 k J/mol;通过试验得出风速为0.2 m/s、湿度为30%、物料厚度1层(8 mm)恒定不变,温度为55℃热风干燥时制得的枸杞品质最好;此外,由枸杞的感官品质分析结果得出:色泽、口感和质地对枸杞的品质有重要的影响。  相似文献   

18.
以香蕉为原料,研究香蕉片热风干燥在高压电场条件下的干燥特性,探讨不同温度和厚度对香蕉片干燥速率和含水率的影响,并与热风干燥条件下进行对比。通过对试验数据进行拟合,建立香蕉片高压电场-热风干燥数学模型,同时计算有效水分扩散系数和活化能。结果表明:温度越高、厚度越薄,香蕉片越快到达干燥终点;与热风干燥相比,在高压电场干燥条件下制成的香蕉片品质更好,并能加快干燥速率、缩短干燥时间。经拟合回归,Page模型能更好地表征香蕉片高压电场-热风干燥过程中水分比的变化(R~2为0.9986),其预测值与试验值拟合度最好。香蕉片高压电场-热风干燥有效水分扩散系数在2.55769×10~(—10)~1.79459×10~(—9) m~2/s,随温度和厚度的增加而增大;3 mm和5 mm香蕉片的活化能分别为18.236 kJ/mol和22.722 kJ/mol,随着厚度的增加而增大。  相似文献   

19.
研究了不同冻融次数和温度条件下大果山楂的热风干燥特性和水分有效扩散系数。结果表明:冻融预处理对大果山楂的干燥特性有显著影响,随着冻融次数的增加,干燥时间缩短,干燥速率有所提高;冻融大果山楂在不同干燥温度下的干燥过程可采用Logarithmic模型进行描述;冻融大果山楂在不同干燥条件下的有效水分扩散系数(Deff)随着冻融次数的增加而变大。  相似文献   

20.
为了研究单粒莲子在不同温度(50、60、70、80、90℃)条件下热风干燥的干燥特性、水分扩散系数及活化能,利用Weibull函数及经验模型对单粒莲子干燥过程进行模拟分析。结果表明:Weibull函数和Midilli模型可以很好地拟合单粒莲子的热风干燥过程;尺度参数α随干燥温度的升高而减小(p0.05);干燥温度对形状参数β的影响较大(p0.05);计算得到干燥过程中估算的水分扩散系数为(8.79×10~(-9)~2.45×10~(-8))m~2/s,水分有效扩散系数为(4.73×10~(-10)~1.31×10~(-9))m~2/s,活化能为22.61 kJ/mol,水分扩散系数随温度的升高而增大。该研究为Weibull分布函数应用于莲子干燥提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号