首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过比较D101、AB-8、HPD400、HPD500、HPD417、HPD826六种大孔树脂的静态吸附效果,从中筛选出适合分离新疆圆柏总黄酮的树脂,并在单因素实验基础上正交优化最佳大孔树脂对新疆圆柏总黄酮的纯化工艺。结果表明,D101大孔树脂对新疆圆柏总黄酮具有较好的分离效果;最佳纯化工艺条件为,上样浓度1.2256 mg/m L,上样流速1.0 m L/min,除杂用水量5 BV,乙醇浓度50%,洗脱剂用量4 BV,洗脱流速1.0 m L/min。在此条件下获得总黄酮回收率为88.36%,纯度为69.96%。   相似文献   

2.
目的研究大孔吸附树脂富集、纯化枳实总黄酮的工艺条件及参数。方法以总黄酮含量、吸附率及解吸率为指标筛选分离纯化枳实总黄酮的工艺。结果柱流速1mL/min,上柱液浓度约1.0mg/mL,除杂洗脱水用量75mL,洗脱剂乙醇浓度50%,乙醇用量52.5mL时,枳实总黄酮含量达92.78%。结论D101型大孔树脂对枳实总黄酮有较好的吸附分离性能,是分离纯化枳实总黄酮的适宜大孔树脂。  相似文献   

3.
大孔吸附树脂纯化玉竹总黄酮工艺研究   总被引:1,自引:0,他引:1  
通过静态吸附与解吸附试验确定纯化玉竹总黄酮的大孔树脂型号并优化其工艺条件,在单因素试验基础上,利用5因素4水平的正交试验对D-101型大孔树脂纯化玉竹总黄酮的工艺进行研究,以总黄酮吸附率、解吸率为指标,确定最佳工艺为玉竹样品液的pH值为8,树脂吸附5h,并用体积25倍于树脂质量(解吸液体积/树脂质量)、浓度为60%的乙醇解吸3.5h.在最佳工艺条件下,玉竹浸膏中总黄酮的含量由未纯化前的4 mg/g提高到21 mg/g左右,纯化后总黄酮纯度提高5倍以上,且操作简单、安全、成本低廉.  相似文献   

4.
筛选纯化柑橘种子总黄酮的最佳大孔树脂及其最佳工艺条件,采用正交设计法考察树脂种类、料液比、解吸液pH、解吸液浓度、振荡时间等因素对纯化的影响。用紫外分光光度法测定总黄酮的含量,计算吸附量、解吸率和提取液总黄酮含量,最后确定的最佳工艺条件为树脂种类为HPD-400,固液比为1∶20,解吸液pH值为5,解吸浓度为60%,振荡时间为10h。  相似文献   

5.
大孔树脂分离纯化枳实总黄酮工艺研究   总被引:1,自引:0,他引:1  
目的研究大孔吸附树脂富集、纯化枳实总黄酮的工艺条件及参数。方法以总黄酮含量、吸附率及解吸率为指标筛选分离纯化枳实总黄酮的工艺。结果柱流速1mL/min,上柱液浓度约1.0mg/mL,除杂洗脱水用量75mL,洗脱剂乙醇浓度50%,乙醇用量52.5mL时,枳实总黄酮含量达92.78%。结论D101型大孔树脂对枳实总黄酮有较好的吸附分离性能,是分离纯化枳实总黄酮的适宜大孔树脂。  相似文献   

6.
采用静态吸附和动态吸附实验考察AB-8、D101、HPD100、HPD400、HPD450、HPD500、HPD600和HPD7007种大孔树脂对薰衣草总黄酮富集纯化效果,并优化最佳大孔树脂对薰衣草总黄酮的吸附与解吸工艺条件.结果表明,AB-8型大孔树脂具有良好的吸附与解吸附性能,最佳工艺条件为,最大上样量为12.76 mg/mL树脂,吸附流速为1.0 mL/min,洗脱采用70%乙醇以1.0 mL/min的流速洗脱5 BV;薰衣草总黄酮的纯度可达60%以上.  相似文献   

7.
为优化紫苏叶总黄酮的大孔树脂分离纯化工艺,以静态吸附率和解吸率为指标,比较了5种不同大孔树脂对紫苏叶总黄酮的吸附和解吸能力,筛选最优树脂,确定了最佳工艺参数。结果显示,D101型大孔树脂对紫苏叶总黄酮有较好的吸附和解吸效果,最佳条件为样品质量浓度3 mg·mL-1、树脂质量3 g、pH4、50 mL 70%乙醇洗脱。此条件下,紫苏叶总黄酮的纯度为70.90%。  相似文献   

8.
以玉竹提取物为原料,以总黄酮吸附率及解吸率为指标,采用动态吸附—解吸的方法筛选出大孔树脂的类型。通过单因素实验和正交实验确立了D-101树脂吸附玉竹总黄酮的优化工艺条件,洗脱过程考察了主要影响因素洗脱剂浓度及其用量。优化后的吸附工艺条件为:树脂用量55 g、上柱药液浓度40.54μg/m L、上柱液p H 6、吸附流速0.5 BV/h。解吸过程解吸液乙醇浓度和用量分别为60%和100 m L。经D-101大孔树脂分离纯化后,玉竹提取物总黄酮的纯度由0.36%提高到2.05%。该纯化方法低廉、安全、操作简单,有较高的应用价值。  相似文献   

9.
大孔树脂纯化蓝莓叶总黄酮的工艺研究   总被引:5,自引:1,他引:5  
比较了9种大孔树脂对蓝莓叶黄酮的吸附和解吸效果。从中筛选出适合蓝莓叶黄酮分离纯化的树脂,并对其吸附和解吸条件进行了探讨。结果表明:HPD-600大孔树脂是纯化蓝莓叶黄酮比较好的树脂,蓝莓叶黄酮在HPD-600型树脂上的吸附平衡时间为4h,解吸平衡时间为1.5 h,吸附的最适质量浓度为4.09 mg/mL,pH 5.0时吸附能力比较强,解吸时宜选用体积分数60%乙醇溶液,吸附温度为30℃,解吸温度为60℃。该工艺生产的黄酮产品为黄色粉末,回收率为81.90%,纯度为78.04%。  相似文献   

10.
大叶藻总黄酮的大孔树脂纯化工艺   总被引:1,自引:0,他引:1  
为纯化大叶藻中提取的总黄酮,选择5 种大孔吸附树脂,通过静态吸附和解吸实验,选定两种最优树脂D101-1和AB-8;再将两种树脂进行混合实验,选出混合吸附树脂最优混合比例,最后确定最佳纯化工艺条件:D101-1和AB-8吸附树脂按2∶3比例混合、上样液pH 3、样液质量浓度1.25 mg/mL、洗脱液乙醇体积分数70%,上样量和上样流速分别为6 BV和3 BV/h,洗脱体积和洗脱流速分别为5 BV和3 BV/h条件下进行纯化实验,样液中的总黄酮含量由原来(12.66±0.42)%上升至(51.25±1.26)%。  相似文献   

11.
目的利用大孔树脂来纯化马兰头中粗黄酮,并确定纯化黄酮的最佳工艺。方法以黄酮回收率为指标,在单因素实验的基础上运用Box-Behnken响应面法(response surface methodology,RSM)设计三因素三水平实验以获得最佳纯化条件。结果 HPD-600大孔吸附树脂纯化马兰头粗提液的最佳工艺条件为:上样浓度0.93 mg/mL、上样pH为3.00、洗脱剂体积分数为84.17%、吸附速率1 BV/h,洗脱速率1 BV/h,此条件下马兰头总黄酮的质量分数由纯化前的4.11%提高到纯化后的50.80%。结论利用HPD-600型大孔树脂可以较好地纯化马兰头中的总黄酮。  相似文献   

12.
以吸附—解吸率和总黄酮含量为考察指标,采用静态和动态吸附两种方法,进行大孔吸附树脂纯化薄荷总黄酮工艺优选。试验考察ADS-7、ADS-17、NKA-9、AB-8、D101、HPD-100六种大孔吸附树脂对薄荷总黄酮的纯化能力。结果表明:AB-8对薄荷总黄酮吸附与分离性能最佳,确定纯化薄荷总黄酮的最佳工艺条件为:流速1mL/min,上样液中薄荷总黄酮质量浓度为2.56 mg/mL,上样量3BV,解析液为4BV 30%乙醇,最终得到含量90.35%的薄荷总黄酮。上述工艺对薄荷总黄酮的分离高效、稳定、可靠,为薄荷资源的综合利用提供理论依据。  相似文献   

13.
以鼠曲草黄酮的吸附率、解吸率为指标,考察了六种大孔吸附树脂对鼠曲草中总黄酮的纯化性能,筛选出最佳的大孔吸附树脂,采用动态法分析了吸附流速、pH条件、解吸液乙醇浓度和解吸液流速对吸附解吸的影响,同时采用高效液相色谱法进行分析检测表征了纯化的效果。实验结果表明,大孔吸附树脂AB-8对鼠曲草总黄酮有很好的吸附和解吸性能,并确定了最佳的吸附和解吸条件为:样品液pH=4.0、吸附流速为2BV/h、解吸液乙醇浓度为50%、解吸流速为2BV/h。树脂饱和吸附量为14.7mg/g湿树脂,在此条件下鼠曲草黄酮纯度由原来的28.0%提升到59.4%。  相似文献   

14.
焦岩  王振宇 《食品科学》2010,31(16):16-20
目的:研究大孔树脂纯化大果沙棘果渣总黄酮的纯化工艺。方法:对7 种大孔吸附树脂纯化大果沙棘果渣总黄酮的效果进行比较,考察X-5 大孔树脂分离纯化大果沙棘果渣总黄酮的最佳工艺条件。结果:X-5 树脂纯化大果沙棘果渣总黄酮效果最佳,其最适工艺条件为:大果沙棘提取液上样质量浓度2mg/mL,吸附时间2h,用4BV 蒸馏水洗脱除去杂质,然后用4BV 70% 乙醇洗脱,树脂可重复利用5 次以上,此条件下纯化后总黄酮回收率最高为86.78%,纯度可由原来的11.6% 提高到34.1%。  相似文献   

15.
AB-8大孔树脂纯化荷叶总黄酮的工艺研究   总被引:2,自引:0,他引:2  
黄酮类化合物是荷叶的主体活性成分,大孔吸附树脂是一类有机高聚物吸附剂,尤其适用于黄酮类化学物的分离纯化.本实验采用大孔树脂对荷叶总黄酮进行分离纯化,确定其分离纯化条件.树脂的筛选试验结果和静态吸附动力学研究表明:在所选择的6种大孔树脂中, AB-8大孔树脂属于快速吸附树脂,吸附量和解吸率都较高,是理想的适用于荷叶黄酮吸附分离的树脂类型,故采用AB-8大孔树脂分离纯化荷叶总黄酮.AB-8大孔树脂动态吸附实验和动态洗脱实验结果表明:当树脂径高比1 ∶ 10;吸附流速3BV/h;上样液pH值5.0;上样液浓度在2.0mg/mL;使用3BV用量90%的乙醇作为洗脱剂;解析流速为1.5BV/h时,荷叶黄酮纯度为53.44%.颜色反应初步鉴定结果表明:荷叶中的黄酮物质大多属于黄酮、黄酮醇类化合物.  相似文献   

16.
利用7种大孔树脂对酸枣仁的总黄酮进行纯化,依据其吸附能力及解吸能力,选出最佳的大孔树脂型号,研究了上样液浓度、上样速度、上样液体积对大孔树脂吸附率的影响以及洗脱剂类型、洗脱剂浓度、洗脱速度、洗脱剂体积对大孔树脂解吸率的影响,采用正交试验对酸枣仁总黄酮的纯化工艺进行了优化。试验结果表明,DM301大孔树脂纯化酸枣仁总黄酮效果最佳,在上样液浓度为0.1 mg/mL、上样速度为1 BV/h、上样液体积为30 mL、洗脱剂为丙酮、洗脱剂浓度为100%、洗脱速度为2 BV/h、洗脱剂体积为55 mL的条件下,获得的酸枣仁总黄酮纯度最高,相较于纯化前提高了约1.1倍。  相似文献   

17.
以总黄酮吸附量为考察指标,采用分光光度法进行测定,先从D101、AB-8、HPD-400、D001、X-5五种不同类型大孔树脂中筛选出静态分离纯化文冠果落果总黄酮的最佳树脂,再对该树脂进行动态吸附工艺参数研究,以确定其对文冠果落果总黄酮的最优纯化方案。结果表明,HPD-400型大孔树脂对文冠果落果总黄酮分离纯化效果最好,优选工艺条件:上样液浓度0.53 mg/m L,上样液p H3.0,上样体积为1.5 BV,上样流速为3 BV/h;洗脱流速为2 BV/h,去离子水除杂体积2 BV,40%乙醇洗脱液3 BV,产物中总黄酮纯度45.79%。上述采用HPD-400型树脂分离纯化文冠果落果总黄酮效果最好,且具有工艺稳定性。   相似文献   

18.
对大孔树脂纯化洋甘菊中总黄酮工艺条件进行优化研究。建立紫外-可见分光光度法测定洋甘菊中总黄酮方法;以吸附率、解吸率为评价指标,考察树脂类型、上样浓度、上样体积、洗脱浓度、洗脱体积对纯化工艺的影响。通过绘制静态吸附平衡曲线、泄露曲线和动态解吸曲线,综合评判确定最优工艺。结果表明:AB-8树脂对洋甘菊中总黄酮纯化效果较好,当上样质量浓度为1.8 mg/m L,上样体积流量为1 BV/h;洗脱剂用70%乙醇,体积流量为1.0 BV/h对洋甘菊中总黄酮的吸附率为62.5%、解吸率68%、回收率61%。经AB-8大孔树脂纯化洋甘菊中总黄酮提高25.3%,此方法稳定可靠,可用于洋甘菊总黄酮的工业纯化要求。  相似文献   

19.
以总黄酮吸附量为考察指标,采用分光光度法进行测定,先从D101、AB-8、HPD-400、D001、X-5五种不同类型大孔树脂中筛选出静态分离纯化文冠果落果总黄酮的最佳树脂,再对该树脂进行动态吸附工艺参数研究,以确定其对文冠果落果总黄酮的最优纯化方案。结果表明,HPD-400型大孔树脂对文冠果落果总黄酮分离纯化效果最好,优选工艺条件:上样液浓度0.53 mg/m L,上样液p H3.0,上样体积为1.5 BV,上样流速为3 BV/h;洗脱流速为2 BV/h,去离子水除杂体积2 BV,40%乙醇洗脱液3 BV,产物中总黄酮纯度45.79%。上述采用HPD-400型树脂分离纯化文冠果落果总黄酮效果最好,且具有工艺稳定性。  相似文献   

20.
以提纯荔枝壳黄酮类化合物为目的,通过内部沸腾法得到荔枝壳总黄酮提取液,采用大孔吸附树脂对其进行纯化研究。结果得到AB-8树脂最适合纯化荔枝壳总黄酮,而最优纯化工艺为上样液浓度为0.5 mg/m L,用量为24.0 m L;吸附流速为1 m L/min,洗脱液为80%乙醇,洗脱剂用量为30.0 m L,洗脱流速为1 m L/min。在该工艺条件下,荔枝壳总黄酮的吸附量达5.18 mg/g,解吸率为99.0%,荔枝壳总黄酮的含量从31.4%提高到了82.7%,荔枝壳总黄酮回收率达92.1%。采用AB-8大孔吸附树脂纯化内部沸腾法得到的荔枝壳提取液效果较好,且树脂更方便回收与利用。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号