首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
以大理苍山野生蕨菜为试材,以多糖得率为指标,通过正交试验设计对提取工艺进行优化,并利用体外抗氧化测试法对蕨菜多糖进行了总抗氧化能力和还原力研究。结果表明,优化后的最佳提取工艺是1∶80(g/m L)的料液比,95℃回流提取110min,回流提取2次,在此条件下蕨菜多糖提取率可达6.803%。蕨菜中多糖的还原力、对超氧阴离子自由基、羟自由基和亚硝酸根的清除率均和浓度呈一定的量效关系,当浓度为1.2mg/m L时,蕨菜中多糖对超氧阴离子自由基、羟自由基、亚硝酸根的清除率分别为43.62%、63.64%、48.44%。  相似文献   

2.
沙棘果渣总黄酮提取工艺及抗氧化活性分析   总被引:3,自引:0,他引:3  
利用超声波辅助提取技术对河西走廊沙棘榨汁提油后的果渣下脚料总黄酮提取工艺进行优化,同时考察果渣黄酮提取液的还原力和清除羟自由基和超氧阴离子自由基的能力。通过单因素试验和L9(34)正交试验,得到影响黄酮得率的主要因素及其影响力大小为乙醇体积分数>提取时间>料液比;确定最佳提取条件为乙醇体积分数60%、提取时间40 min、料液比1∶50(g/mL);此条件下,河西走廊沙棘果渣中总黄酮提取率为2.55%,果皮渣中总黄酮提取率为0.651%,沙棘籽粕中总黄酮提取率为1.901%。当质量浓度大于0.151 4 mg/mL时,沙棘果渣黄酮提取液的还原力大于VC的还原力;沙棘果渣黄酮提取液对羟自由基和超氧阴离子自由基均有一定的清除作用,其对羟自由基的清除率为39.07%~42.01%,大于同等质量浓度VC的清除作用,而对超氧阴离子自由基的清除率为47.17%~60.38%,小于同等质量浓度VC的清除作用,说明沙棘果渣黄酮提取液对羟自由基有更强的清除能力。  相似文献   

3.
以新鲜紫甘蓝为原料,以盐酸溶液为提取剂,通过单因素和正交试验对提取工艺进行筛选,并通过紫甘蓝提取物对超氧阴离子、羟自由基的清除作用观察提取物抗氧化活性。结果显示,最佳的提取工艺为:以0.3 mol/L的盐酸为提取剂,按紫甘蓝匀浆[紫甘蓝∶水=1∶1(g/m L)]∶盐酸=1∶5(体积比)加入盐酸溶液,在60℃下浸提2 h,提取率为1.67%。紫甘蓝色素提取物对超氧阴离子和羟自由基具有一定的清除作用,浓度在0~12 mg/m L的范围内,随着浓度的增大,清除超氧阴离子的效果增强,其最大清除率为31.1%,IC_(50)为2.301 mg/m L;在浓度0~0.6 mg/m L的范围内,随着浓度的增大,清除羟自由基的效果增强,其最大清除率为54.7%,IC_(50)为0.956 9 mg/m L;紫甘蓝色素提取物对羟自由基的清除能力强于对超氧阴离子的清除作用。  相似文献   

4.
采用响应面法优化菟丝子中总黄酮的提取工艺。在单因素实验的基础上,以乙醇浓度、提取温度、料液比、提取时间为自变量,总黄酮得率为因变量,运用Box-Behnken设计-响应面优化菟丝子中总黄酮回流提取工艺。并通过菟丝子总黄酮对DPPH自由基、羟自由基和超氧阴离子自由基的清除作用来评价其抗氧化活性。结果表明:菟丝子总黄酮最佳提取工艺条件为乙醇浓度90.0%、提取温度70℃、料液比1:15 g/mL、提取时间100 min。在此条件下,菟丝子总黄酮得率为(34.65±0.02) mg/g,与模型预测值(34.37 mg/g)相对误差为0.81%,说明回流提取菟丝子总黄酮的工艺稳定可靠。菟丝子总黄酮对DPPH自由基、羟自由基和超氧阴离子的IC50分别为0.067、7.209、0.119 mg/mL,抗坏血酸对DPPH自由基、羟自由基和超氧阴离子的IC50分别为0.082、1.731、0.054 mg/mL,体外抗氧化试验结果表明,菟丝子总黄酮对DPPH自由基具有较强的清除能力,明显高于抗坏血酸;而对羟自由基、超氧阴离子具有一定的清除能力,但清除能力低于同浓度的抗坏血酸。  相似文献   

5.
研究油樟叶总黄酮的提取工艺及其体外抗自由基活性。在单因素试验基础上,采用均匀设计法优化油樟叶总黄酮的提取条件,并通过测定油樟叶总黄酮对DPPH自由基、超氧阴离子自由基和羟自由基的清除率研究其体外抗自由基活性。结果表明,提取油樟叶总黄酮的优化条件为乙醇体积分数60%、液料比34 m L/g、浸泡时间0 min、回流提取时间122 min、提取温度74℃,此条件下总黄酮提取量为42.09 mg/g。油樟叶总黄酮粗品表现出较强的体外抗自由基活性,其对DPPH自由基、超氧阴离子自由基和羟自由基的半数清除浓度分别为2.81、3.35、3.21 mg/m L。  相似文献   

6.
研究定心藤75%乙醇提取物不同极性部位的体外抗氧化活性,采用5种不同极性溶剂萃取(石油醚、氯仿、乙酸乙酯、正丁醇、水)得到5种萃取物,分别测定黄酮含量,并通过还原能力测定、DPPH自由基清除能力、羟自由基清除能力和超氧阴离子自由基清除能力4种测定方法,对各萃取物抗氧化能力进行研究。结果显示,各提取物对Fe3+均有一定的还原能力,乙酸乙酯萃取物还原效果最为明显;定心藤不同极性部位均具有一定的抗氧化活性,乙酸乙酯萃取物抗氧化能力最强,DPPH·的半数清除浓度IC50为0.28mg/m L,羟自由基半数清除浓度IC50为0.41mg/m L,在0.2mg/m L浓度下,对超氧阴离子自由基的清除率达到42.88%,而其黄酮含量最高,达到609.96mg/g,这也许与它具有较高的抗氧化活性有关。说明乙酸乙酯萃取物具有较好的开发天然抗氧化剂的前景。  相似文献   

7.
采用Box-Behnken Design(BBD)开展响应面试验,研究料液比、乙醇浓度、浸提温度、浸提时间和提取级数五因素及其互作效应对红枣核总黄酮提取率的影响,确定红枣核总黄酮的最佳提取工艺条件为:料液比1∶70(g/m L),乙醇浓度40%,浸提温度80℃,浸提时间4 h,提取级数3次,在此条件下黄酮提取率为16.64 mg/g。此外,以BHT和VC为阳性对照评价了提取物的抗氧化活性,结果表明在一定浓度范围内红枣核总黄酮对超氧阴离子自由基、羟基自由基、DPPH自由基、亚硝基离子自由基、ABTS自由基的最高清除率分别达到53%、85%、71%、68%、91%,总还原能力分别为BHT和VC的35%和36%,表明所提取的红枣核黄酮具有较强的体外抗氧化活性。  相似文献   

8.
葛根异黄酮类化合物提取工艺优化及其抗氧化活性研究   总被引:1,自引:0,他引:1  
目的:研究葛根异黄酮类化合物的最优提取工艺及其体外抗氧化能力。方法:在单因素试验的基础上设计正交试验,通过方差分析和多重比较确定最优提取工艺。以超氧阴离子自由基(O2-·)、羟基自由基(·OH)、1,1-二苯基-2-苯基自由基(DPPH·)清除率测定法及还原力测定法评价异黄酮类化合物体外抗氧化活性。结果:最佳工艺条件是:提取时间1 h、料液比1∶20、提取温度80℃、乙醇体积分数50%。异黄酮类化合物在0~1mg/m L质量浓度范围具有较明显的抗氧化活性,并随着质量浓度的增加活性增强。其对超氧阴离子自由基的清除率达到57.1%,对羟基自由基的清除率达到52.04%,对1,1-二苯基-2-苯基自由基的清除率达到45.9%。结论:葛根中含有较多的异黄酮类化合物,具有体外抗氧化活性。  相似文献   

9.
采用1,1-二苯基-2-三硝基苯肼自由基、羟自由基、超氧阴离子、还原力、总抗等体外抗氧化活性模型和抗氧化活性综合评价指数,分析四川江油地区不同溶剂萃取的豆腐柴黄酮级分(乙醇、乙酸乙酯、正丁醇、氯仿、水)的抗氧化活性。结果显示,不同浓度乙醇提取总黄酮的1,1-二苯基-2-三硝基苯肼自由基清除活性最高。1,1-二苯基-2-三硝基苯肼自由基清除率、羟基自由基清除率、ABTS阳离子自由基清除率、总抗和还原力皆随乙醇浓度的升高而呈现先增强后减弱的趋势,超氧阴离子自由基清除率却随乙醇浓度增加一直降低。综合评价指数显示不同浓度乙醇抗氧化活性依次为75%醇提物65%醇提物55%醇提物85%醇提物95%醇提物。乙酸乙酯层萃取物的1,1-二苯基-2-三硝基苯肼自由基清除率、总抗、还原力及ABTS阳离子自由基清除率要优于其它各萃取层。正丁醇层萃取物的超氧阴离子自由基清除率要优于其它各萃取层。乙酸乙酯层抗氧化活性最佳。豆腐柴叶总黄酮有较好的抗氧化活性,可作为抗氧化剂或者健康食品原料开发。  相似文献   

10.
研究瓶尔小草总黄酮的提取工艺及抗氧化活性。在单因素实验的基础上,采用响应面法探讨了提取溶剂的浓度、料液比、提取温度、提取时间这几个因素对瓶尔小草总黄酮提取效果的影响,得到最佳提取条件为:乙醇体积分数64%,料液比1:30,提取温度60℃,提取时间123 min;在此条件下瓶尔小草总黄酮提取率为45.12 mg/g。此外,以抗坏血酸为对照,采用清除DPPH自由基、超氧阴离子自由基和测定总还原力的方法来评价黄酮提取液的抗氧化性能,实验研究表明:瓶尔小草总黄酮清除DPPH自由基的能力很强,当浓度均为1.0 mg/mL时,瓶尔小草黄酮的清除率为90%,清除能力与抗坏血酸接近;同时还具有较好的清除超氧阴离子自由基的能力和较强的还原能力。该植物可作为天然抗氧剂开发。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号