首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究黄饭花不同部位提取物对α-葡萄糖苷酶、乙酰胆碱酯酶和对亚硝酸根离子的清除能力。结果表明黄饭花60%乙醇提取物、乙酸乙酯部位提取物和正丁醇部位提取物的抑制α-葡萄糖苷酶活性强于阳性对照阿卡波糖(IC50=2.998 mg/m L),其IC50值为1.640、0.952、1.900 mg/m L;黄饭花乙酸乙酯部位提取物对乙酰胆碱酶(acetyl cholinesterase,ACh E)的抑制作用效果强于阳性对照利斯的明(IC50=0.745 mg/m L),其IC50值为0.503 mg/m L;黄饭花乙酸乙酯部位提取物对亚硝酸根离子的清除活性约高于阳性对照VC(IC50=1.199 mg/m L),其IC50值为1.079 mg/m L。黄饭花乙酸乙酯部位的提取物具有较强的抑制α-葡萄糖苷酶和ACh E活性及清除亚硝酸离子的能力。  相似文献   

2.
研究桐花树叶乙酸乙酯提取物对α-葡萄糖苷酶活性的抑制作用。桐花树叶70%醇提取物经萃取获得石油醚部位、二氯甲烷部位、乙酸乙酯部位、正丁醇部位、水部位5个部位。对各部位进行多酚含量、总黄酮含量、DPPH·清除活性测定,从中筛选出活性物质含量高、自由基清除活性较强的桐花树叶乙酸乙酯提取物,对其用α-葡萄糖苷酶进行体外活性抑制作用试验,通过酶促动力学方法与绘制Lineweaver-Burk曲线,推断桐花树叶乙酸乙酯提取物的酶抑制类型,所得的结果与阿卡波糖进行比较。结果表明:桐花树叶乙酸乙酯部位和桐花树叶水部位对α-葡萄糖苷酶均有抑制作用,且抑制作用均优于阿卡波糖,其半抑制浓度(IC50)分别为40.59μg/m L和60.79μg/m L。桐花树叶乙酸乙酯提取物抑制类型为混合Ⅱ型抑制,对游离酶(E)的抑制常数(Ki)为0.245 mg/m L,对酶-底物络合物(ES)的抑制常数(Kis)为0.023 mg/m L。  相似文献   

3.
研究桑叶DNJ提取物体外抑制α-葡萄糖苷酶活性和体外抗氧化能力。以4-硝基苯基-α-D-吡喃葡萄糖苷为底物,以拜糖平为阳性对照,测定桑叶DNJ提取物在体外对α-葡萄糖苷酶活性的抑制作用。分别采用普鲁士蓝法、DPPH法、邻二氮菲-Fe2+法测定桑叶DNJ提取物体外抗氧化作用。桑叶DNJ提取物在体外对α-葡萄糖苷酶具有较强的抑制作用(IC_(50)=0.350 mg/m L),是阳性对照拜糖平(IC_(50)=0.982 mg/m L)的2.7倍。桑叶DNJ提取物具有较强的体外总抗氧化能力(OD=1.490),具有一定的清除DPPH·(IC_(50)=0.589 mg/m L)和·OH(IC_(50)=1.788 mg/m L)的能力。  相似文献   

4.
采用超声提取不同月份准噶尔山楂叶,系统溶剂萃取其醇提物得到环己烷部位、乙酸乙酯部位、正丁醇部位和水部位,分别测定其总黄酮含量,通过清除DPPH自由基、铁离子还原能力和α-葡萄糖苷酶抑制活性评价准噶尔山楂叶不同提取物的体外抗氧化活性及降血糖活性。结果表明,准噶尔山楂叶各提取物均有不同程度的抗氧化和α-葡萄糖苷酶抑制活性,其中以总黄酮含量最高的乙酸乙酯部位(28.87 mg/g)效果最佳,其对DPPH清除活性(IC_(50)=0.026 mg/m L)远强于阳性对照BHA(IC_(50)=0.996 mg/m L),α-葡萄糖苷酶抑制活性(IC_(50)=191.71 g/m L)高于阳性对照阿卡波糖(IC_(50)=1 044.32 g/m L)。各提取物体外抗氧化和降血糖活性与其总黄酮含量呈正相关性,说明黄酮类化合物为影响其活性的主要因素。  相似文献   

5.
采用清除DPPH自由基、ABTS自由基和铁离子还原/抗氧化能力(tRAP)方法,评价开封产黄色菊花(春日剑山和麦浪)的体外总抗氧化活性,并将所测结果与水溶性维生素E(6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylicacid,Trolox)及阳性对照二丁基羟基甲苯(BHT)进行比较.结果发现,不同菊花的不同溶剂提取物抗氧化活性不同.随着提取溶刺极性的增大,同种菊花不同溶剂提取物总的抗氧化活性逐渐增大.即甲醇提取物)乙酸乙酯提取物)石油醚提取物.所有提取物中,麦浪甲醇提取物的抗氧化活性最好.它清除DPPH自由基的能力(IC_(50)=20.01mg/L)略低于BHT(IC_(50)=18.92mg/L),清除ABTS自由基的能力(IC_(50)=25.93mg/L)约为BHT(IC_(50)值为7.72mg/L)的1/3.  相似文献   

6.
在超声波辅助下,分别以无水乙醇、丙酮、蒸馏水为提取溶剂,对桑葚果实进行提取,浓缩后分别得无水乙醇提取物AE,丙酮提取物EE,蒸馏水提取物WE,通过测定提取物对DPPH·、ABTS~+·、·OH的清除作用评价桑葚的抗氧化活性。提取物AE、EE、WE对DPPH·的IC_(50)分别为0.173、0.18、0.19 mg/m L;对ABTS~+·的IC_(50)分别为0.044、0.052、0.06 mg/m L;对·OH的IC_(50)分别为0.67、0.83、1.02 mg/m L。提取物清除DPPH·、ABTS~+·、·OH的IC_(50)值均远远小于10 mg/m L,表明桑葚提取物具有良好的自由基清除活性。试验表明溶剂对提取物清除自由基的活性有一定影响。  相似文献   

7.
采用α-葡萄糖苷酶抑制模型,研究余甘子多酚提取物(polyphenol extracts from Phyllanthus emblica L.,PEPs)对α-葡萄糖苷酶抑制作用,并通过PEPs还原能力及自由基清除试验,测定其抗氧化作用。结果表明,PEPs能有效抑制α-葡萄糖苷酶活性,抑制率可达95.71%,半数抑制浓度(IC50)为0.71 mg/m L。PEPs具有一定的还原能力,在0.01 mg/m L~0.03 mg/m L,PEPs的还原能力与维生素C(Vitamin C,VC)相当。PEPs能有效清除自由基,其清除羟基自由基(·OH)和1,1-二苯-2-苦肼自由基(DPPH·)的IC_(50)值分别为0.77 mg/m L、5.23 mg/L,清除DPPH·的能力高于V_C,且PEPs对α-葡萄糖苷酶的抑制及抗氧化作用呈剂量依赖关系,PEPs具有很好的开发价值。  相似文献   

8.
为研究香蕉茎秆汁液抑制晚期糖基化终末产物(AGEs)活性,选用α-葡萄糖苷酶和α-淀粉酶抑制模型研究其对碳水化合物代谢关键酶的抑制作用,并采用Lineweaver-Burk双倒数法研究其动力学性质。同时对AGEs的抑制和清除ABTS~+·的能力也进行了评价。结果表明,香蕉茎秆汁液对α-葡萄糖苷酶的半抑制浓度(IC_(50))为1.51 mg/m L,对α-葡萄糖苷酶的抑制类型为混合型抑制。香蕉茎秆汁液对α-淀粉酶的半抑制浓度(IC_(50))是8.64 mg/m L,抑制类型为不可逆抑制。通过实验研究,香蕉茎秆汁液具有一定清除ABTS~+·的能力,对牛血清白蛋白果糖模型AGEs也具有一定的抑制作用。香蕉茎秆汁液可抑制体外AGEs的生成。  相似文献   

9.
为探究化橘红柚皮苷对α-葡萄糖苷酶活性的抑制作用和清除DPPH自由基能力,采用体外α-葡萄糖苷酶抑制模型,测定化橘红柚皮苷对α-葡萄糖苷酶的抑制能力及清除DPPH自由基能力,并分析其对α-葡萄糖苷酶活性的抑制作用类型。结果表明,化橘红柚皮苷对α-葡萄糖苷酶活性的抑制作用优于阿卡波糖,柚皮苷主要以剂量依赖性、时间依赖性的方式抑制α-葡萄糖苷酶的活性,其对α-葡萄糖苷酶的半抑制浓度(IC_(50))为0.008 mg/mL,阿卡波糖的IC50为0.026 mg/mL,且其对α-葡萄糖苷酶的抑制作用表现为竞争性、可逆抑制,同时0.08 mg/mL浓度的柚皮苷具有较好的DPPH自由基清除能力。基于化橘红柚皮苷具有一定的抗氧化活性及对α-葡萄糖苷酶具有较强的抑制作用,可将其进一步用于天然抗氧化剂和α-葡萄糖苷酶抑制剂的开发。  相似文献   

10.
本研究采用水、80%乙醇、乙酸乙酯和石油醚4种不同极性的溶剂对杭白菊进行提取,以总还原能力、DPPH·、O-2·和·OH清除率为指标,研究了所得4种杭白菊粗提物的抗氧化能力。结果表明:总还原能力由强到弱依次为80%乙醇提取物乙酸乙酯提取物水提物石油醚提取物;80%乙醇提取物清除自由基的能力最强,其清除DPPH·、O-2·、·OH的IC50值分别为0.33、0.44、0.34 mg/m L;石油醚提取物清除DPPH·、O-2·、·OH的能力最弱,清除DPPH·和·OH的能力均小于50%,清除O-2·的IC50值为0.85 mg/m L;水提物清除DPPH·、O-2·和·OH的IC50值分别为0.57、0.69、0.56 mg/m L;乙酸乙酯提取物清除·OH的能力小于50%,清除DPPH·、O-2·的IC50值分别为0.56、0.62 mg/m L。因此,不同杭白菊提取物均具有抗氧化作用,且抗氧化能力与其提取溶剂有关。  相似文献   

11.
芭蕉的α-葡萄糖苷酶抑制活性   总被引:1,自引:0,他引:1  
利用体外α-葡萄糖苷酶抑制模型对芭蕉花与根提取物进行活性评价,并与阳性对照Acarbose比较,发现芭蕉花与根提取物均能抑制α-葡萄糖苷酶活性。除芭蕉花的乙酸乙酯和正丁醇提取物外,其他提取物活性均远大于阳性对照Acarbose(IC50=1103.01μg·mL-1)。其中,芭蕉根和花的石油醚提取物的活性最高(IC50=32.03μg·mL-1和49.37μg·mL-1)。不同部位比较,芭蕉根的α-葡萄糖苷酶抑制活性好于花;同一部位不同溶剂的提取物比较,石油醚提取物α-葡萄糖苷酶抑制活性高于乙酸乙酯和正丁醇提取物。  相似文献   

12.
为探讨广西食用海藻不同极性部位提取物对α-葡萄糖苷酶活性的影响及抑制作用动力学。采用萃取法制得食用海藻(海带、裙带菜、紫菜)的甲醇部位、石油醚部位、乙酸乙酯部位、正丁醇部位及水部位,采用体外筛选(PNPG)法筛选抑制α-葡萄糖苷酶活性的部位。通过酶促反应动力学研究高抑制活性部位的反应动力学,绘制Lineweaver-Burk曲线,判断抑制剂与酶作用的抑制类型。结果表明,广西北部湾食用海藻(海带、裙带菜、紫菜)的不同极性部位均有一定的α-葡萄糖苷酶抑制活性,其中紫菜的乙酸乙酯部位抑制活性相对较高,其半数抑制浓度(IC_(50))为7.89 mg/mL,其抑制活性高于阳性对照阿卡波糖(IC_(50)=11.45 mg/mL)。食用海藻(海带、裙带菜、紫菜)的乙酸乙酯部位的抑制动力学研究结果表明对α-葡萄糖苷酶抑制作用属于混合型抑制类型。广西食用海藻的不同极性部位均具有一定的α-葡萄糖苷酶抑制活性,有望开发为新型α-葡萄糖苷酶抑制剂。  相似文献   

13.
为研究茶花粉黄酮对α-葡萄糖苷酶的抑制作用,以茶花粉为原料,将提取、萃取及大孔吸附树脂处理得到的10个组分分别进行黄酮含量及α-葡萄糖苷酶抑制活性的测定。结果表明,茶花粉粗提物经萃取后黄酮类物质主要在乙酸乙酯中富集,乙酸乙酯萃取相经大孔树脂层析后50%乙醇洗脱相中的黄酮含量最高(180.17 mg RE/g),当该样品浓度为5 mg/m L时,对α-葡萄糖苷酶的抑制率达82.67%,显著高于其它样品(p0.05);相关性分析表明,茶花粉黄酮含量与α-葡萄糖苷酶抑制活性呈极显著正相关关系(0.867,p0.01);酶动力学分析显示蜂花粉黄酮提取物对α-葡萄糖苷酶的半抑制浓度为1.27 mg/m L,抑制类型为可逆非竞争型抑制,抑制常数为1.17 mg/m L。该研究结果为蜂花粉黄酮及α-葡萄糖苷酶天然抑制剂的制备提供理论依据。  相似文献   

14.
采用96微孔板法测定香水莲花整花、雄蕊、花瓣、花托醇提物以及雄蕊不同极性部位提取物对胰脂肪酶的抑制活性;通过酶反应动力学方法确定雄蕊乙酸乙酯提取物对胰脂肪酶的抑制类型,并考察其在人工模拟消化肠液中对胰脂肪酶抑制效果的影响。结果表明,香水莲花各部位的醇提物对胰脂肪酶都具有一定的抑制作用,雄蕊醇提物的抑制作用最强。雄蕊不同极性部位提取物对胰脂肪酶的抑制活性由强到弱依次是乙酸乙酯提取物(半数抑制浓度IC_(50)=5.64mg/mL)二氯甲烷提取物(IC_(50)=8.75 mg/mL)正己烷提取物(IC_(50)=11.80 mg/mL)正丁醇提取物(IC_(50)=22.47 mg/mL)。乙酸乙酯提取物对胰脂肪酶的作用类型为非竞争性抑制;经体外模拟消化后,对胰脂肪酶仍有较强的抑制效果,而且抑制率随浓度的升高而增大。因此,香水莲花提取物是一种具有胰脂肪酶抑制活性的优良植物源原料,可用于降脂功能性产品的开发。  相似文献   

15.
研究溶剂极性对蒲公英根提取物活性功能的影响。以蒲公英根为原料,分别采用不同极性的6种溶剂(水、甲醇、无水乙醇、乙酸乙酯、氯仿和正己烷)进行提取,比较不同溶剂提取物的抗氧化能力和对α-葡萄糖苷酶和α-淀粉酶的影响,并对提取物中的活性成分进行分析。结果表明提取溶剂的极性对蒲公英根的提取效率和提取物抗氧化活性的影响差异显著,随着溶剂极性的降低,提取率和抗氧化活性也随之下降,水的提取率最高可达24.87%,且水提物清除DPPH自由基、对羟基自由基和ABTS+·能力最高,具有较强的还原能力。随着浓度的增加6种提取物对α-葡萄糖苷酶和α-淀粉酶抑制率不断增大,当浓度达到5 mg/m L时,水提物对两种酶的抑制能力最强,达到71.56%和74.9%。且6种提取物中水提取物多糖含量最高为63.92 mg/g,乙醇提取物总黄酮和总酚含量最高,分别为10.03 mg/g和12.26 mg/g,甲醇提取物皂苷含量最高为0.88 mg/g。通过体外验证不同极性溶剂提取物的抗氧化以及降糖能力,对蒲公英根活性功能的评估及开发应用提供理论依据和技术参考。  相似文献   

16.
为确定石榴花中抑制α-葡萄糖苷酶的有效活性部位,针对α-葡萄糖苷酶这个糖代谢途径中重要的靶蛋白,实时追踪α-葡萄糖苷酶的抑制率,筛选出p H 8.0的水溶液为最佳提取溶剂。结果表明:正丁醇萃取部位经丙酮沉淀后,半抑制浓度IC_(50)为4.36 mg/m L,该沉淀经70%乙醇洗脱部位对α-葡萄糖苷酶的抑制率最高。石榴花中皂甙粗提物对α-葡萄糖苷酶的抑制活性高于其他活性成分,IC_(50)为3.853 mg/mL。石榴花是一种天然、有效的α-葡萄糖苷酶抑制剂来源。  相似文献   

17.
为研究老山芹不同溶剂提取物的活性功能,本研究老山芹为原料,比较了不同溶剂提取物的活性成分和抗氧化效果,以及不同溶剂提取物对α-葡萄糖苷酶和α-淀粉酶的影响,并对适宜条件下不同溶剂提取物对HepG2和panc-1细胞的影响进行研究。试验结果表明:随着浓度的增加两种酶抑制率而不断增大,并得出两种酶抑制率的IC50值,碱提取条件下α-葡萄糖苷酶和α-淀粉酶的IC50最小,分别为0.47 mg/mL、2.17 mg/mL。四种溶剂提取物中多糖含量最高的是碱提取,含量为58.09 mg/g;总酚含量最高的是醇提物,含量为11.48 mg/g;黄酮含量最高的是醇提物,含量为3.96 mg/g,并且四种提取物中醇提物的抗氧化活性最高,酸提物抗氧化活性最低。四种溶剂提取物在低浓度条件下,均能促进HepG2和panc-1细胞的增长,随着浓度的增加HepG2和panc-1细胞存活率均呈不同程度的下降,提取物在高浓度条件下对细胞有抑制作用。  相似文献   

18.
目的:对6种不同栽培品种南瓜(金钩、甜面、日本、辽宁新民金钩、超甜蜜本、蜜本)提取物α-葡萄糖苷酶抑制活性进行研究。方法:通过建立体外α-葡萄糖苷酶抑制模型,对南瓜提取物进行活性筛选,并对提取物浓度与抑制活性关系进行研究。结果:6种栽培品种南瓜不同溶剂提取物均有一定的α-葡萄糖苷酶抑制活性,其中,金钩南瓜石油醚提取物的抑制活性最好(IC50=143.91μg/mL),活性远大于阳性对照阿卡波糖(IC50=1103.01μg/mL)。不同溶剂提取物显示石油醚提取物抑制活性均高于乙酸乙酯提取物和甲醇提取物。结论:6种栽培品种南瓜提取物均有一定的α-葡萄糖苷酶抑制活性,但不同品种其抑制活性具有一定的差别。  相似文献   

19.
确定超临界CO_2萃取辅助超声波提取桔梗糖蛋白的最佳工艺与其对α-葡萄糖苷酶抑制作用。以乙醇为夹带剂,采用超临界CO_2萃取技术辅助超声提取桔梗中的糖蛋白,以得率及其多糖含量为检测指标,对提取工艺进行评价;以PNPG为底物测定对α-葡萄糖苷酶抑制作用。结果表明:超临界CO_2萃取的最佳工艺为:温度45℃,压力25 MPa,乙醇浓度为70%,萃取时间为1.5 h;其平均得率和糖含量分别为27.83%和62.68%,糖蛋白和阿卡波糖对α-葡萄糖苷酶的半数抑制浓度IC_(50)值分别为0.276 mg/m L和0.321 mg/m L。结果表明:超临界CO_2萃取技术结合超声提取桔梗糖蛋白的方法可行,步骤简单,无污染,桔梗糖蛋白对α-葡萄糖苷酶有较强的抑制作用。  相似文献   

20.
采用不同极性溶剂(石油醚、乙酸乙酯、正丁醇以及水)将牡丹籽壳提取物(70%乙醇溶液提取物)逐级系统分离,获得不同极性部位的提取物。研究牡丹籽壳提取物和各极性部位提取物的总多酚含量;采用DPPH及FRAP法,以L-抗坏血酸(VC)和2,6-二叔丁基-4-甲基苯酚(BHT)为参照抗氧化剂考察其抗氧化活性。结果表明:总多酚含量有较大差异,从小到大依次为水部位正丁醇部位乙酸乙酯部位牡丹籽壳提取物,变化范围为1.30~57.50 mg/g;牡丹籽壳提取物与不同极性部位提取物均具有一定的抗氧化能力,总抗氧化活性从小到大依次为正丁醇部位水部位牡丹籽壳提取物乙酸乙酯部位,FRAP值范围为27.28~1 250.08 mmol/L,其中VC和BHT的FRAP值分别为1 814.88 mmol/L和226.00 mmol/L;对DPPH自由基清除能力从弱到强依次为牡丹籽壳提取物乙酸乙酯部位正丁醇部位水部位,半数抑制浓度(IC_(50))范围为22.47~71.00μg/m L,其中BHT的IC_(50)为34.30μg/m L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号