首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
以柠檬酸为活化剂,采用UV/Fenton法进行了降解茜素红溶液的实验。考察了Fe~(2+)投加量、H_2O_2的投加量、pH值、底物浓度等对脱色率的影响。结果显示,UV/Fenton/柠檬酸体系对茜素红有较好的去除效果。在Fe~(2+)的浓度为0.1g/L,30%H_2O_2的加入量4mL,pH值为3.5左右,反应时间为60min,茜素红去除率达到95%以上。  相似文献   

2.
采用Fe_3O_4/Na_2S_2O_8体系催化氧化处理垃圾渗滤液生化尾水,研究了Na_2S_2O_8与Fe_3O_4投加量、pH、反应时间等因素对处理效果的影响。结果表明,在pH=3,m(S_2O_8~(2-))∶12m(COD)=1.2,Fe_3O_4投加量为1.5 g/L,反应时间为24 h的条件下,COD与色度去除率分别为63%和100%。FTIR分析结果表明,Fe_3O_4/Na_2S_2O_8体系的小分子有机物含量比未处理水样小分子有机物含量有所降低。  相似文献   

3.
采用Fenton氧化法处理有机硅工业废水。通过正交试验和单因素试验,考察了反应时间、n(H_2O_2)/n(Fe~(2+))、温度、pH值和H_2O_2投加量等因素对废水CODCr去除率的影响。结果表明,Fenton氧化法的影响因素主次为:H_2O_2投加量、pH值、温度、n(H_2O_2)/n(Fe~(2+))、反应时间;在pH值为3、n(H_2O_2)/n(Fe2+)值为6、反应时间为60 min、温度为35℃的最佳条件下,对于CODCr的质量浓度为5 440 mg/L的有机硅废水,在100 m L的水样中投加14 mL H_2O_2(30%),可使CODCr的去除率达到90.92%。  相似文献   

4.
以FeSO_4为活化剂,采用Na_2S_2O_8/H_2O_2耦合高级氧化体系处理垃圾渗滤液生化尾水。借助响应面法BoxBehnken设计分析Fe SO_4·7H_2O、Na_2S_2O_8、H_2O_2投加量等因素对COD_(Cr)去除率的影响。研究结果显示:Fe~(2+)对COD_(Cr)去除效果影响显著,Na_2S_2O_8与H_2O_2两者之间有显著的交互影响,Na_2S_2O_8/H_2O_2体系产生协同效应,有效提高了COD_(Cr)去除率。在Fe SO_4·7H_2O投加量为2 g/L,Na_2S_2O_8投加量为1.75 g/L,H_2O_2投加量为3 m L/L的条件下,渗滤液尾水COD_(Cr)去除率达到70%以上。  相似文献   

5.
《应用化工》2017,(11):2106-2110
用KMnO_4、ClO_2、NaClO、Na_2S_2O_8、KHSO_5及O_3等水处理中常见的氧化剂去除水中的Mn~(2+),考察了投加量、联合投加、紫外光照、pH和共存离子等对Mn~(2+)去除率的影响。结果表明,KMnO_4和O_3对溶解的Mn~(2+)有很好的去除效果,当KMnO_4与Mn~(2+)投加比为2∶3时,反应30 min后,Mn~(2+)下降至0.006 mg/L;O_3流量0.6 L/min,5 min后Mn~(2+)下降至0.056 mg/L。KMnO_4和O_3在弱碱性条件下去除效果更佳。ClO_2有一定去除效果。采用UV辐射,在UV254/ClO_2、UV254/KHSO_5、UV254/Na_2S_2O_8系统中,当氧化剂与Mn~(2+)摩尔比分别为8∶5,4∶1和4∶1时,对起始Mn~(2+)浓度在0.8~0.9 mg/L的模拟水样,Mn~(2+)可分别下降至0.006,0.006,0.001 mg/L,均优于国家标准。单用NaClO处理,在较短反应时间条件下,效率较低,若UV254/NaClO联用,则亦有较好去除效果。KHSO_5/KMnO_4与Mn~(2+)比例为5∶2时,Mn~(2+)下降至0.06 mg/L,较单个投加效果显著提高。  相似文献   

6.
结合杭州某化工厂的现有工艺,针对该化工厂污水处理出水COD高于GB 21904-2008《化学合成类制药工业水污染物排放标准》,采用Fenton氧化法对其二沉池出水进行深度处理。通过改变原水pH值、H_2O_2/Fe~(2+)质量比投加量、反应时间等因素,来讨论最佳运行参数。试验结果表明,Fenton试剂对化工废水的处理中,在污水pH为5.0、H_2O_2(质量分数为30%)投加量为16 mmol/L、H_2O_2/Fe~(2+)质量比为1︰2.8、反应时间为60 min时的工艺条件下,COD的去除效果最佳。  相似文献   

7.
《应用化工》2022,(11):2106-2110
用KMnO_4、ClO_2、NaClO、Na_2S_2O_8、KHSO_5及O_3等水处理中常见的氧化剂去除水中的Mn(2+),考察了投加量、联合投加、紫外光照、pH和共存离子等对Mn(2+),考察了投加量、联合投加、紫外光照、pH和共存离子等对Mn(2+)去除率的影响。结果表明,KMnO_4和O_3对溶解的Mn(2+)去除率的影响。结果表明,KMnO_4和O_3对溶解的Mn(2+)有很好的去除效果,当KMnO_4与Mn(2+)有很好的去除效果,当KMnO_4与Mn(2+)投加比为2∶3时,反应30 min后,Mn(2+)投加比为2∶3时,反应30 min后,Mn(2+)下降至0.006 mg/L;O_3流量0.6 L/min,5 min后Mn(2+)下降至0.006 mg/L;O_3流量0.6 L/min,5 min后Mn(2+)下降至0.056 mg/L。KMnO_4和O_3在弱碱性条件下去除效果更佳。ClO_2有一定去除效果。采用UV辐射,在UV254/ClO_2、UV254/KHSO_5、UV254/Na_2S_2O_8系统中,当氧化剂与Mn(2+)下降至0.056 mg/L。KMnO_4和O_3在弱碱性条件下去除效果更佳。ClO_2有一定去除效果。采用UV辐射,在UV254/ClO_2、UV254/KHSO_5、UV254/Na_2S_2O_8系统中,当氧化剂与Mn(2+)摩尔比分别为8∶5,4∶1和4∶1时,对起始Mn(2+)摩尔比分别为8∶5,4∶1和4∶1时,对起始Mn(2+)浓度在0.8(2+)浓度在0.80.9 mg/L的模拟水样,Mn0.9 mg/L的模拟水样,Mn(2+)可分别下降至0.006,0.006,0.001 mg/L,均优于国家标准。单用NaClO处理,在较短反应时间条件下,效率较低,若UV254/NaClO联用,则亦有较好去除效果。KHSO_5/KMnO_4与Mn(2+)可分别下降至0.006,0.006,0.001 mg/L,均优于国家标准。单用NaClO处理,在较短反应时间条件下,效率较低,若UV254/NaClO联用,则亦有较好去除效果。KHSO_5/KMnO_4与Mn(2+)比例为5∶2时,Mn(2+)比例为5∶2时,Mn(2+)下降至0.06 mg/L,较单个投加效果显著提高。  相似文献   

8.
《应用化工》2022,(9):2440-2443
采用Fenton氧化法对橡胶硫化促进剂生产废水进行预处理,考察了酸析法以及H_2O_2投加量、Fe(2+)投加量、pH值、反应时间对Fenton氧化法COD去除率的影响。结果表明,Fenton氧化法处理该废水的最佳反应条件为:pH值为3,H_2O_2投加量为55 mL/L,Fe(2+)投加量、pH值、反应时间对Fenton氧化法COD去除率的影响。结果表明,Fenton氧化法处理该废水的最佳反应条件为:pH值为3,H_2O_2投加量为55 mL/L,Fe(2+)投加量为2.8 g/L,反应时间为40 min。此时COD的去除率达82.91%。将酸析与Fenton氧化法联合后COD的去除率可达到85.78%,效果良好,为后续蒸发结晶分离氯化钠、硫酸钠奠定了基础。  相似文献   

9.
采用O_3/Na_2S_2O_8耦合体系预处理制药废水,研究了O_3通气量、Na_2S_2O_8投加量、pH、反应时间等因素对COD和色度去除率的影响。结果表明,COD和色度的去除率随着Na_2S_2O_8投加量、O_3通气量、反应时间的增加而增大,在碱性条件下更有利于废水中污染物的去除。在O_3通气量为1.2 g/(h·L)、Na_2S_2O_8投加质量浓度为8 g/L、pH=8.6、反应时间为150 min的条件下,制药废水的COD、色度的去除率分别达到68.3%、97%,B/C由0.12提高到0.38。  相似文献   

10.
对Fenton氧化处理电镀废水进行了研究,探讨了Fenton反应中的H_2O_2投加量、Fe~(2+)与H_2O_2的物质的量比、pH值以及反应时间对COD去除效果,得到的最佳Fenton工艺参数为:H_2O_2投加量为0.06mol/L、[Fe~(2+)]/[H_2O_2]为1∶3、pH值为3、反应时间40min、反应温度25℃。在此条件下,废水COD从原来2750mg/L降为441mg/L,COD去除率可达到83.95%。  相似文献   

11.
以过硫酸钠/硫酸亚铁/柠檬酸(Na_2S_2O_8/FeSO_4/CA)化学氧化体系为处理方法,研究了不同药剂配比和氧化剂投加方式(一次性投加和序批式投加)对土壤中石油类污染物(TPH)降解效果的影响。结果表明,通过Fe~(2+)活化过硫酸钠氧化可以有效去除土壤中石油类污染物,当Na_2S_2O_8/FeSO_4/CA摩尔比为4∶1∶1时,TPH降解效果最好,降解率为53. 90%;过硫酸钠一次性投加的TPH降解效率(49. 34%)高于两次投加的TPH降解效率(20. 81%)和三次投加的TPH降解效率(6. 24%),表明一次性投加氧化剂对TPH的降解效果优于序批式投加的降解效果。  相似文献   

12.
采用零价铁(ZVI)活化Na_2S_2O_8-NaClO体系处理垃圾渗滤液生化尾水,考察了pH、催化剂nZVI投加量、氧化剂Na_2S_2O_8投加量、氧化剂NaClO投加量等因素对氧化效果的影响,并利用傅里叶光谱、三维荧光光谱分析技术对水样前后进行分析。结果表明,nZVI活化Na_2S_2O_8-NaClO体系能够有效的去除垃圾渗滤液生化尾水中目标污染物,当催化剂nZVI投加量为0.6g/L、Na_2S_2O_8投加量为2.5g/L、NaClO投加量为30mL/L(有效氯的质量分数10%)、水样初始pH为6时,COD和NH_4~+-N的去除率分别为85%和90%。垃圾渗滤液生化尾水经过nZVI活化Na_2S_2O_8-NaClO体系处理后污染程度显著降低,大量腐殖酸类物质被自由基降解。  相似文献   

13.
采用微波诱导活性炭负载铁铜(Fe_3O_4-CuO-AC)催化H_2O_2、Na_2S_2O_8处理二乙基次膦酸铝(AlPi)废水,探究了两种体系下pH、催化剂投加量、氧化剂投加量、温度等因素对废水中总磷去除率的影响,对比了双氧化体系(MW/Fe_3O_4-CuO-AC/Na_2S_2O_8+H_2O_2)与两种单一氧化体系(MW/Fe_3O_4-CuO-AC/Na_2S_2O_8、MW/Fe_3O_4-CuO-AC/H_2O_2)对AlPi的氧化效果。结果表明,双氧化体系对AlPi模拟废水和工业废水中总磷的去除率可分别达到85.47%、71.43%,显著高于单一氧化体系。  相似文献   

14.
采用Fenton-NaClO组合氧化法对煤制甲醇污水进行深度处理。确定了最佳的Fenton氧化条件:H_2O_2投加量为90 mmol/L,Fe~(2+)浓度为30 mmol/L,p H=4,反应时间为60 min。最佳的NaClO氧化条件:p H=6,NaClO浓度为40 mmol/L,反应时间为60 min。经Fenton-NaClO组合氧化法处理后,出水COD、氨氮分别从280、130 mg/L降到43、8 mg/L,均可满足《污水综合排放标准》(GB 8978—1996)中规定的一级排放标准。  相似文献   

15.
利用化学沉淀法、亚硫酸钠液相还原法、芬顿氧化联合工艺对高SCN~-含量有机制药废水进行处理。结果表明,在CuSO_4投加量34 g/L、pH为6、反应温度25℃、反应时间1 h的优化条件下,化学沉淀法COD由27.75 g/L降至10.48 g/L;在CuSO_4与Na_2SO_3投加量为1.6倍理论量,pH为3,反应时间10 min的优化条件下,亚硫酸钠液相还原法废水中的SCN~-去除率为99.85%,COD降至7.032 g/L;在H_2O_2投加量为1.2倍理论量,H_2O_2、Fe~(2+)摩尔比10:1,pH为3.5,反应时间1 h的优化条件下,芬顿试剂处理废水,COD降至1.411 g/L。联合法处理后,COD和SCN~-总去除率分别达94.91%和99.85%。  相似文献   

16.
以刚果红废水为模拟染料废水,通过Co~(2+)对传统Fenton试剂进行改性研究,探索Co~(2+)与Fe~(2+)摩尔比、H_2O_2的投加量、反应温度及pH值对刚果红去除效果的影响。结果表明:Co~(2+)对传统Fenton试剂降解刚果红废水具有显著的促进作用,使得反应最佳pH值向近中性条件移动。当Co~(2+)与Fe~(2+)摩尔比为1∶1,3%H_2O_2投加量为2 mL,温度为65℃,pH值为7,降解60 min时,改性Fenton试剂对刚果红去除率达到98.2%。正交实验结果说明温度是最主要影响因素。  相似文献   

17.
采用Fe~(2+)活化Na_2S_2O_8技术处理实际焦油蒸馏废水。首先通过正交试验考察了Na_2S_2O_8初始浓度、Fe~(2+)初始浓度、pH以及温度等条件对稀释后焦油蒸馏废水COD去除率的影响规律,然后通过单因素实验确定了其最佳反应条件。实验结果表明,当p H为7.00,Na_2S_2O_8初始浓度为20mmol/L,Fe~(2+)初始浓度为20 mmol/L条件下,在30℃降解反应120 min,其化学需氧量(COD)去除率为53.5%,总有机碳(TOC)去除率为62.2%,降解过程遵循指数衰减规律,为焦油蒸馏废水的预处理技术提供了一条新的途径。  相似文献   

18.
采用Fenton氧化法对炼油厂的二级浮选出水进行深度处理,研究了Fe SO4投加量、H2O2投加量、pH值、反应时间等对废水中COD去除效果的影响。结果表明,Fenton氧化法处理的最佳反应条件为:H2O2(30%)投加量4 m L/L,Fe SO4投加量0.6 g/L,反应时间10 min,初始反应pH值4。在此条件下,处理后废水COD浓度符合《石油炼制工业污染物排放标准》的要求。  相似文献   

19.
采用Fenton氧化-Na_2S沉淀法处理综合电镀废水,并研究了Fe~(2+)与H_2O_2的浓度比、Na_2S的投加量、废水最终pH值、反应温度及反应时间对残余金属离子质量浓度的影响。结果表明:当H_2O_2与Fe~(2+)的浓度比为1.0∶1.4、Na_2S的投加量为0.35 g/L、废水最终pH值为7.0时,在20℃下反应15 min后静置,上清液中残余Cd~(2+)、Zn~(2+)、Ni~(2+)、Cu~(2+)的质量浓度均大幅降低,Cd~(2+)、Zn~(2+)、Ni~(2+)、Cu~(2+)的去除率分别为92.8%、90.0%、91.3%、97.3%。可见,Fenton氧化-Na_2S沉淀法可有效去除综合电镀废水中的Cd~(2+)、Zn~(2+)、Ni~(2+)、Cu~(2+)等金属离子。  相似文献   

20.
采用矿化垃圾吸附-Fenton-NaClO氧化联合深度处理垃圾渗滤液。吸附实验在矿化垃圾粒径为2 mm,用700℃焙烧改性的矿化垃圾作为吸附剂,投加量为60g/L、pH=9的条件下进行,COD和氨氮的去除率分别达到最大的53.15%和78.77%;吸附出水在初始pH为6、H_2O_2投加量为60 mmol/L、n(H_2O_2):n(Fe~(2+))为4:1、反应时间为75 min的条件下进行Fenton氧化,COD和氨氮的去除率分别达到最大的52.37%和11.5%;Fenton氧化出水在NaClO,投加量为60 mmol/L、pH为6、温度为50℃和反应时间为60 min的条件下进行NaClO氧化,NaClO对COD和氨氮的去除率分别达到最高的81.86%和98.96%,此时COD为78 mg/L,氨氮的质量农度为0.42mg/L,均可满足GB16889-2008规定的排放标准。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号