首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
以甘薯淀粉为原料,采用电解、微波复合法制备回生抗性淀粉;以抗性淀粉制备率为考察指标,讨论微波、电解顺序对回生抗性淀粉制备产率的影响。最佳工艺为:淀粉→糊化→高压→微波→电解→老化→酶解→离心→干燥;最佳工艺参数:淀粉乳质量浓度50 g/L,高压温度120℃,高压时间30 min,糊化温度90℃,糊化时间30min,微波功率400 W,处理时间4 min,电解电压90 V,电解时间2 min,老化温度4℃,老化时间12 h。在此工艺条件下,甘薯回生抗性淀粉产率为24%,比空白组12%产率提高了1倍。  相似文献   

2.
以蕨根淀粉为试验材料,采用单因素试验和Box-Behnken试验优化微波法制备蕨根淀粉的工艺条件。微波法制备蕨根抗性淀粉优化工艺条件为微波时间1 min、微波功率480 W、淀粉乳浓度20%、回生温度4℃、回生时间24 h。该条件下,蕨根抗性淀粉含量为14.21%,明显高于原蕨根淀粉的抗性淀粉含量(1.02%)。  相似文献   

3.
以苦荞米为原料,添加脱脂奶粉、甜赛糖、复合稳定剂等辅料,采用烘焙、浸泡、磨浆、预糊化、液化、糖化、普鲁兰酶处理、过滤、调配、均质等一系列工艺过程制备出高抗性淀粉含量的苦荞乳饮料。以抗性淀粉含量为指标,通过糊化米水比、糊化时间、普鲁兰酶处理用量及时间的一系列单因素实验,确定出苦荞乳饮料最佳工艺条件为糊化米水比1:8、糊化时间40min、普鲁兰酶用量0.06m L、酶处理时间30min;此工艺条件下,苦荞乳饮料中抗性淀粉含量达到最大,为10.97%。以感官得分为指标,通过正交实验,确定出了苦荞乳饮料的最佳配方为苦荞米10%、奶粉2.5%、甜赛糖0.15%、复合乳化剂0.1%(均为质量分数比)。  相似文献   

4.
采用微波法对玉米多孔淀粉原料进行处理,经过正交试验优化工艺,制备具有不同取代度的羟丙基玉米多孔淀粉。研究在微波作用下,淀粉乳质量分数、微波处理时间、微波功率以及环氧丙烷用量对产品取代度的影响。结果表明,用微波法制备羟丙基玉米多孔淀粉的最佳反应条件为微波功率300W、环氧丙烷用量(质量分数)6.90%、微波时间3min、淀粉乳质量分数30%,在该条件下制备的羟丙基多孔淀粉的摩尔取代度为0.0103。  相似文献   

5.
以马铃薯精制淀粉为原料,抗性淀粉得率为评价指标,通过单因素及正交试验确定了微波-酶解法制备马铃薯抗性淀粉的最佳工艺条件:在淀粉乳质量分数15%,微波作用时间90 s,微波作用功率800 W,耐高温α-淀粉酶添加量10 CU/g干淀粉,耐高温α-淀粉酶作用时间30 min,普鲁兰酶添加量0.10 PUN(G)/g干淀粉,普鲁兰酶酶解时间6 h,普鲁兰酶作用温度55℃的条件下,4℃老化24 h。经重复验证,RS得率最高达14.0%。  相似文献   

6.
以甘薯淀粉为原料制备抗性淀粉,用正交实验确定压热处理制备抗性淀粉的最佳制备工艺。结果表明,甘薯抗性淀粉制备的最佳条件为:淀粉糊的浓度35%、pH值4.5、糊化温度115℃、糊化时间70min、老化时间72h。  相似文献   

7.
刘敏  韩育梅  何君  黄欢  王绍帆 《食品工业科技》2018,39(15):176-180,188
以马铃薯淀粉为原料,采用微波-湿热法制备马铃薯抗性淀粉。考察了淀粉乳质量分数、微波功率、微波时间对马铃薯抗性淀粉得率及结构的影响。结果表明,在微波时间240 s、微波功率750 W、淀粉乳质量分数15%条件下,马铃薯抗性淀粉的最大得率为9.77%。通过扫描电镜、红外光谱、X-射线衍射分析表明,马铃薯淀粉颗粒完整性被破坏,结晶结构改变,结晶度增加;马铃薯淀粉经微波-湿热处理后,未有新的官能团产生,但分子间氢键发生变化。  相似文献   

8.
微波-酶法制备甘薯抗性淀粉的工艺研究   总被引:1,自引:0,他引:1  
以甘薯淀粉为原料,用微波辅助加热酶法制备甘薯抗性淀粉,通过单因素和响应面实验,确定其最佳工艺条件为:淀粉质量分数为11%,微波时间为300s,微波功率800W,普鲁兰酶添加量为78ASPU/g(淀粉干基),脱支处理时间为24h。在该实验条件下,抗性淀粉得率最高值为31.25%,可为今后甘薯抗性淀粉的制备及在食品工业中的应用提供参考。  相似文献   

9.
大米抗性淀粉压热处理制备工艺的研究   总被引:2,自引:0,他引:2  
抗性淀粉以其显著优点及特殊的生理功能,成为食品营养学的一个研究热点。以大米淀粉为原料,制备大米抗性淀粉对大米的深加工具有重要的经济意义。以抗性淀粉得率为评价指标,通过单因素及正交试验研究了压热法制备抗性淀粉的最佳工艺参数。结果表明,对大米淀粉进行压热处理时,影响抗性淀粉得率的主次因素为:热处理温度热处理时间淀粉乳质量分数,最佳工艺条件为:热处理温度120℃,热处理时间70 min,淀粉乳质量分数30%。采用此组合进行验证性试验得抗性淀粉产率为9.54%。  相似文献   

10.
为提高参薯淀粉转化为抗性淀粉的产率,对参薯淀粉的压热法制备抗性淀粉进行了研究。以参薯淀粉为原料,通过单因素试验分析各种因素对抗性淀粉产率的影响;经过三因素二次正交旋转组合设计结合响应面分析,得出淀粉乳浓度、pH、压热时间对抗性淀粉含量的影响大小次序:淀粉乳浓度>pH>压热时间;最佳工艺条件为淀粉乳质量浓度33.00%,pH 7.6,121℃压热处理36 min,4℃下老化处理24 h,80℃烘干18 h,得到的抗性淀粉质量分数为13.92%。  相似文献   

11.
以玉米淀粉为原料,采用嗜冷普鲁兰酶脱支处理和压热处理相结合的方式制备玉米抗性淀粉,考察了玉米淀粉乳质量分数、耐高温α-淀粉酶添加量、嗜冷普鲁兰酶添加量、嗜冷普鲁兰酶作用时间对抗性淀粉得率的影响,采用正交试验对压热-酶解法制备玉米抗性淀粉的工艺参数进行了优化。采用扫描电子显微镜、X-射线衍射和差示扫描量热仪对玉米抗性淀粉形貌、晶体结构、热特性进行了观察与分析。结果表明,制备玉米抗性淀粉的最佳工艺条件为:玉米淀粉乳质量分数18%、耐高温α-淀粉酶添加量7 U/g、嗜冷普鲁兰酶添加量10 U/g、嗜冷普鲁兰酶作用时间9 h。在最佳条件下,玉米抗性淀粉得率为16.84%。玉米淀粉经复合酶法处理后,抗性淀粉形成了致密的层状晶体结构,表面形态结构呈现出不同于玉米原淀粉A型晶体结构的V型晶体结构;玉米抗性淀粉的起始温度、峰值温度、终止温度和相变焓值分别为117.07、140.69、153.03 ℃和1 858.12 J/g,均高于玉米原淀粉。  相似文献   

12.
压热法制备绿豆抗性淀粉工艺的优化   总被引:2,自引:0,他引:2  
研究了压热法制备绿豆抗性淀粉(MRS)的工艺参数。采用单因素实验比较了不同淀粉乳浓度、压热温度、压热时间、贮藏温度、贮藏时间对MRS得率的影响。在此基础上采用Box-Behnken的中心组合实验设计,优化MRS制备参数,建立了各因子与MRS得率关系的数学回归模型,确定了最佳的制备条件,即淀粉乳浓度为27.31%,贮藏温度为4.77℃,压热时间40 min时,MRS的产率为12.63%,与预测的理论值12.41%极为接近,与抗性淀粉含量为4.04%的绿豆原淀粉相比,MRS含量增加8.59%。  相似文献   

13.
探究超声-微波协同酶法制备芸豆抗性淀粉的最佳工艺条件及其物理结构特性。以紫花芸豆为试验材料,利用超声-微波协同酶法制备RS3型抗性淀粉,考察不同水平时淀粉悬浮液质量分数、超声时间、普鲁兰酶添加量和微波功率对抗性淀粉得率的影响,同时做响应面优化试验;通过扫描电镜、红外光谱、凝胶渗透色谱仪等方法分析芸豆淀粉及抗性淀粉的结构特性。结果表明:淀粉悬浮液质量分数16%、普鲁兰酶添加量12.5 ASPU/g(干基)、微波功率300 W、超声-微波协同处理20 min时,芸豆抗性淀粉得率最高为(24.37±0.41)%。与原淀粉相比,芸豆抗性淀粉颗粒破损,呈形状大小各异的块状碎石结构;抗性淀粉未出现新的特征吸收峰;处理后的芸豆抗性淀粉平均聚合度降低,多分散系数降低。超声-微波协同酶解法可提高芸豆抗性淀粉得率,抗性淀粉形成过程中淀粉官能团没有变化,其余结构特性改变。  相似文献   

14.
凝血法检测绿豆凝集素活性,并改进凝集活性检测兔血红细胞处理条件,在单因素试验的基础上设计响应面Box-Behnken试验,优化绿豆凝集素提取工艺条件。结果表明,凝集活性检测兔血红细胞的处理最佳条件为戊二醛体积分数0.15%、25 ℃处理血细胞20 min;胰蛋白酶添加量25 U/mL、25 ℃处理15 min,优化条件下提高了兔血红细胞凝集灵敏度且延长了兔血红细胞保存时间。磷酸盐缓冲溶液为绿豆凝集素最佳浸提溶液,绿豆凝集素优化工艺条件为料液比1∶9.09(g/mL)、NaCl浓度0.3 mol/L、浸提时间4.16 h,在此条件下最大绿豆凝集素比活力预测和验证值分别为134.91 U/mg和139.02 U/mg。  相似文献   

15.
以绿豆淀粉为原料,一氯乙酸作为醚化剂,乙醇为溶剂,制备羧甲基绿豆淀粉。以20 g绿豆淀粉为基准,采用正交和单因素试验对制备工艺进行优化,探讨氢氧化钠用量、一氯乙酸用量、醚化温度、醚化时间对产品取代度影响。试验结果表明,其最佳制备工艺条件为:氢氧化钠用量(氢氧化钠/淀粉摩尔比)1.3、一氯乙酸用量(一氯乙酸/淀粉摩尔比)1.0、醚化温度52℃、醚化时间120 min;在此条件下,制得羧甲基绿豆淀粉取代度为1.05。  相似文献   

16.
采用碱性蛋白酶作为蛋白质酶解剂,对提取芋头淀粉的工艺进行研究。在单因素试验基础上,采用响应面设计优化提取芋头淀粉的工艺参数。结果表明:芋头淀粉酶法提取的最佳工艺参数为酶解时间137 min、酶用量0.9%、酶解温度41 ℃、pH 10,在此条件下芋头淀粉的实际提取率达88.92%。碱性蛋白酶法制得的芋头淀粉主要理化指标为蛋白质含量0.08%、白度94.45%、平均粒径1.23 μm。扫描电子显微镜图显示该提取方法未对淀粉颗粒造成损伤。  相似文献   

17.
目的 为了改良豆渣品质,引入绿豆淀粉与豆渣复配并辅以乳化剂和凝固剂制成豆渣/淀粉凝胶,考察复配前后豆渣/淀粉凝胶的持水性、质构及口感变化。方法 通过单因素试验与响应曲面法得到豆渣和淀粉的最佳复配比,结果 结果表明:最佳配方为豆渣添加量30g,绿豆淀粉添加量9g,石膏添加量0.12gS,加水量34mlS,高速分散25min,加热20min,结论 此时豆渣/淀粉凝胶在硬度、弹性和咀嚼性等方面都达最佳,色泽均匀、口感细腻,感官评分高达88分,为豆渣在食品工业中的进一步研究及应用提供参考。  相似文献   

18.
章丽琳  叶陵  张喻 《中国酿造》2015,34(12):105
为了提高抗性淀粉的得率,并获得抗性淀粉制备方法的最佳工艺参数,该试验以马铃薯淀粉为原料,抗性淀粉得率为评价指标,采用纤维素酶-压热法制备马铃薯抗性淀粉。研究淀粉乳浓度、酶添加量、酶解时间、压热温度、压热时间5个因素对马铃薯抗性淀粉得率的影响,在单因素试验的基础上,通过正交试验优化得出马铃薯抗性淀粉的最佳制备工艺条件,即淀粉乳含量25%、淀粉乳pH 5.0、酶用量30 U/mL、酶解时间50 min、压热温度125 ℃、压热时间30 min、老化温度4 ℃、老化时间18 h,在此条件下抗性淀粉的得率为30.33%。  相似文献   

19.
张正茂  阚玲 《食品科学》2015,36(8):86-91
采用行星式球磨机对玉米淀粉进行机械活化,再与辛烯基琥珀酸酐(octenyl succinic anhydride,OSA)发生酯化反应制备OSA淀粉酯。研究机械活化时间、反应温度、反应体系pH值、淀粉乳质量分数、反应时间因素对玉米淀粉酯化反应的影响,并采用二次回归正交旋转组合设计方法和响应面分析对制备条件进行优化。结果表明,机械活化对玉米淀粉OSA酯化反应有明显的增强作用,且反应不受pH值的影响;得到最优工艺条件为机械活化10 h、反应温度33.1 ℃、pH 8.45、淀粉乳质量分数12.2%、反应时间3 h,在此条件下制得机械活化辛烯基琥珀酸淀粉酯的平均取代度为0.020 3。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号