首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Amino-terminated polyethers and amino-terminated polyurethane were used as curing agent to cure the epoxy resin together and get a series of cured products. The damping properties of the composites were studied by DMA test at different measurement frequencies. Damping mechanical tests show that the flexible epoxy resin has higher loss factor than common epoxy. The highest loss factor reaches 1.57. Also the height and position of loss factor peak of the flexible epoxy resin varies by changing the content of amino-terminated polyethers. Results shows that the flexible epoxy resin can be used as damping polymer materials at room temperature or in common frequency range.  相似文献   

2.
Fly ash/Al-Mg composites are fabricated by powder metallurgical method. The morphology and structure of fly ash/A l-Mg composites are characterized by scanning electron microscope (SEM) and X-ray diffraction, respectively. The influences of different fly ash content on the friction and wear behavior of the composites are investigated at a constant sliding velocity of 400 r/min and the worn mechanism of composites is discussed. The results indicate that the friction coefficient is steadily lower than that of Al alloy matrix at the lower fly ash content and loads. For the fly ash/Al-Mg composites, the wear mechanism is characterized as abrasive wear and adhesive wear under small normal load and at low fly ash content, and it is characterized as delamination wear and abrasive wear transferred onto the counterpart under high normal load and at high fly ash content.  相似文献   

3.
The synthesis and characterization of a new class of cementitious composites filled with polymer emulsions were investigated, and their superior mechanical strength and durability properties compared to composites devoid of fi llers were reported. Polymer emulsions were utilized to mechanically reinforce the composite and bridge the cement, fly ash, aggregate and fibers. The results reveal that the epoxy emulsion and poly(ethylene-co-vinyl acetate) emulsion markedly enhance the mechanical and durability properties of cemetitious composites. The fi bers can be pulled out in the form of slip-hardening and the abrasion phenomenon can be observed clearly on the surface of the fibers. The hydration extent of cement is higher than that of the pristine composites. The polymer modified cementitious composites designed on micromechanics, have fl exibility and plasticity which could be applied for a novel form of multifunctional materials with a range of pipeline coatings applications.  相似文献   

4.
由于高延性纤维增强水泥基复合材料(HDCC)收缩变形大和价格昂贵等问题,采用国产PVA纤维、粉煤灰等材料制备低收缩、低成本HDCC。采用微观试验和宏观试验进行分析,结果表明:随着粉煤灰掺量的增加,延迟了HDCC的水化反应,引起力学性能的降低,使纤维基体的界面微观力学参数发生改变,促进了纤维从基体中拔出,使延性和韧性显著提高,同时显著降低了收缩变形。  相似文献   

5.
To improve performance of PTFE-based damping material,composites with several fillers were prepared by compressing and sintering. The dynamic mechanical properties of the composites were investigated by means of viscoanalyser. Temperature-dependent loss factors,storage modulus and loss modulus were obtained. And SEM was employed to study the compatibility between PTFE and fillers. The results show that,when blending PPS and PEEK at proper content,the loss factor curve appears double peaks,which can widen the high-damping temperature region of the composites. Blending graphite or alumina can increase the storage modulus obviously,but decrease the value of loss factor. And because graphite or alumina combines with matrix poorly,glide would happen at interface when bearing external load. The interface friction can dissipate vibration energy,which increases the loss modulus of the composites. Blending PPS,PEEK and graphite or alumina at right content,PTFE-based composites can meet demands as damping material in practical engineering.  相似文献   

6.
为了提高粉煤灰的利用率,扩大应用领域,在Ca(OH)2-H2O-CO2系统,利用化学沉积方法成功地实现了粉煤灰颗粒的表面包覆,包覆后粉煤灰具有较高的白度和表面粗糙度.描述了复合粉煤灰的制备过程,研究了粉煤灰表面的包覆机理,借助SEM,BET,XRD等先进检测技术分析了粉煤灰改性前后的性能变化.试验结果表明:复合粉煤灰的白度由入料的33.54提高到73.13,比表面积由入料的3.07 m^2/g增加到9.77 m^2/g.在25%相同填充量的情况下,PP-复合粉煤灰的力学性能均优于未包覆粉煤灰、重质碳酸钙或轻质碳酸钙作填料的性能.  相似文献   

7.
PVA纤维水泥基材料力学性能试验研究   总被引:1,自引:0,他引:1  
为了制备超高韧性的水泥基复合材料(ultra high toughness cementitious composites,UHTCC),通过抗压、抗折以及直接拉伸试验,结合扫描电镜(SEM)测试,探讨粉煤灰掺量、石英砂掺量对UHTCC力学性能的影响;通过粉煤灰-石英砂复配,研究超高韧性水泥基材料的最优粉煤灰-石英砂掺量配比.结果表明:随着粉煤灰掺量的增加,抗压、抗折强度降低,拉伸变形增大,但是当粉煤灰质量/水泥质量(m(FA)/m(C))大于2.7后,拉伸变形提高缓慢;当石英砂质量/胶凝材料的质量(m(S)/m(B))为0.36时,拉伸变形性能最好;本文确定的最优粉煤灰-石英砂体系掺量为:m(FA)/m(C)-m(S)/m(B)=1.2-0.48,m(FA)/m(C)-m(S)/m(B)=2.2-0.36.  相似文献   

8.
以环氧树脂 (epoxy resin, EP) 作为基体, 在多壁碳纳米管 (multi-walled carbon nanotubes, MWCNTs) 表面通过原位生长 2-甲基咪唑锌盐 (ZIF-8), 得到 ZIF-8/MWCNTs (ZCNTs) 复合材料。通过改变 EP 基体中 ZCNTs 含量, 制备 ZCNTs/EP 系列复合材料, 并对其介电、导热性能进行研究。研究结果表明, 当填料 ZCNTs 质量分数为 0.3%,频率为 102 Hz 时, ZCNTs/EP 复合材料的介电常数为 8.19; 频率为 102 ~ 107 Hz 时介电损耗始终低于 0.025。同时,ZCNTs/EP 的导热系数达到 0.467 W/(m·K), 比纯 EP 的导热系数提高了 116%, 显著提升了 ZCNTs/EP 复合材料的导热性能。  相似文献   

9.
The split Hopkinson pressure bar (SHPB) testing with diameter 40 mm was used to investigate the dynamic mechanical properties of engineered cementitious composites (ECCs) with different fly ash content. The basic properties including deformation, energy absorption capacity, strain-stress relationship and failure patterns were discussed. The ECCs showed strain-rate dependency and kept better plastic flow during impact process compared with reactive powder concrete (RPC) and concrete, but the critical compressive strength was lower than that of RPC and concrete. The bridging effect of PVA fiber and addition of fly ash can significantly improve the deformation and energy absorption capacities of ECCs. With the increase of fly ash content in ECCs, the static and dynamic compressive strength lowered and the dynamic increase factor enhanced. Therefore, to meet different engineering needs, the content of fly ash can be an important index to control the static and dynamic mechanical properties of ECCs.  相似文献   

10.
The dynamic mechanical behavior of a new kind of flexible epoxy FE-1,which was crosslinked under four different thermal crosslink conditions,was studied.Dynamic mechanical measurement was carried out from 10 ℃ to 120 ℃,and loss factor,tan δ and the storagemodulus as functions of temperature were presented under five different frequencies of 0.1 Hz, 1 Hz,5 Hz,50 Hz and 100 Hz. The experimental results show that temperature has dramatic effects on the dynamic mechanical behavior of flexible epoxy. Compared with other common available epoxy, the flexible epoxy has higher loss factor over broad frequency and common temperature range. Activation energy corresponding to glass transition process of FE-1 was calculated from the temperature corresponding to tan 8 rna~ values, obtained at different measurement frequencies. The maximum value of loss factor is 0.75 and the Tg varies from 6 ℃ to 50 ℃, indicating the flexible epoxy can be used as damping polymer materials at common temperature or frequency range.  相似文献   

11.
In order to get a fiber reinforced plastic(FRP) composite with good damping property as well as good mechanical properties, different types of reinforcing materials were used to reinforcing a damping resin. The influence of fiber types and conformation on the damping property of the composite are tested. Compared to the glass fiber(GF), carbon fiber(CF) can improve the damping factor of the composites; the highest tanδ value is 0.827 while the Tg is 22.5 ℃. The style of the fibers also influences the damping factors of the composite. The composite reinforced with mat has higher loss factors than that composite reinforced with clothe for the reason that the former has the ability to deform and the composite has higher resin content. The loss factor of GF mat reinforced composite is 0.704 while the Tg is 27 ℃. Both composite has good damping properties and can be used as the damping layer of the structural damping composite.  相似文献   

12.
Tensile properties of epoxy casts together with shape memory alloy (SMA), glass (GF) and carbon (CF) woven fabric reinforced epoxy matrix super hybrid composites were investigated, respectively. In order to enhance the mechanical strength of this advanced material, two categories of modifications including matrix blending and fiber surface coating by nano-silica were studied. Scanning electron microscopy (SEM) and fiber pull-out tests were adopted to complement the experimental results, respectively. Experimental results reveal that the toughness of epoxy matrix is enhanced significantly by adding 2wt% nano-silica. The failure mechanism of SMA reinforced hybrid composites is different from that of GF/CF/epoxy composites. Compared with the matrix modification, the fibers modified by coating nano-silica on the surface have better tensile performances. Moreover, the fiber pull-out test results also indicate that composites with fiber surface modification have better interfacial performances. The modification method used in this paper can help to enhance the tensile performance of the mentioned composite materials in real engineering fields.  相似文献   

13.
为了研究多指标情况下再生混凝土力学性能的最优组合,以再生骨料替代率、粉煤灰替代率和钢纤维掺入率为因素,抗压强度、劈拉强度、抗折强度、拉压比和折压比为指标,分别利用排队评分法与矩阵分析法对再生混凝土正交试验结果进行分析.结果表明:各因素对再生混凝土力学性能影响的大小顺序依次为钢纤维掺入率、粉煤灰替代率、再生骨料替代率; 再生混凝土力学性能的最优组合为A4B2C4,即再生骨料替代率为100%、粉煤灰替代率为10%、 钢纤维掺入率为1.8%; 矩阵分析法所得结果与正交试验分析结果更为接近,这表明矩阵分析法在确定最佳组合方案时优于排队评分法.  相似文献   

14.
沥青路用城市生活垃圾焚烧飞灰的物化性能   总被引:1,自引:0,他引:1  
为了探索城市生活垃圾焚烧飞灰的沥青路用资源化可行性,借鉴沥青路用填料的试验方法测试了飞灰的基本物理性能,采用比表面积和孔径分析仪、扫描电子显微镜(SEM)、X射线荧光光谱仪(XRF)、X射线衍射仪(XRD)、综合热分析仪(STA)等表征方法,分析了飞灰的BET比表面积、孔径与孔容、表观形貌、化学成分、热性能.研究结果表明:与矿粉相比,飞灰密度小、亲水系数大、含水率大、碱性强、烧失量大、体积安定性不良、可溶盐含量高、粒径分布与矿粉类似;BET比表面积大、孔径大、孔容大;表面疏松多孔、物相复杂、活性高;热性能活跃,而在沥青混合料的施工温度范围内,飞灰热稳定性好、热失重小.鉴于飞灰的物化性能,提出飞灰可溶盐对沥青路面水稳定性与强度产生影响,飞灰表面微孔、高的表面能、强碱性、高的含水率等性质对沥青路面高温稳定性与低温抗裂性产生影响,并给出相应的理论改善措施.  相似文献   

15.
粉煤灰中的含钙矿物及其影响   总被引:2,自引:0,他引:2       下载免费PDF全文
含钙矿物是粉煤灰中重要的矿物成分,其含量变化会使粉煤灰性质与使用性能发生比较大的变化。总结分析了粉煤灰中含钙矿物的形成过程与存在形态,重点分析了含钙矿物对粉煤灰性能及其应用的影响。结果显示粉煤灰中SO3与CaO含量存在一定线性关系,含钙矿物增加会引起粉煤灰颗粒形貌、硅酸盐离子聚合度等发生变化,提高粉煤灰火山灰活性,但也会引起粉煤灰使用过程中体积稳定性不良,对粉煤灰在水泥混凝土中应用产生不利影响,若合理利用将会使得含钙矿物成为粉煤灰利用的有利因素。  相似文献   

16.
Drying shrinkage of thermal insulation mortar with glazed hollow beads was measured by a vertical length comparator, and the influences of fly ash with different contents (0, 18%, 36%, and 54% were used) on the long-term drying shrinkage were discussed. The mass loss was measured by the weighting method and the pore structure was characterized using three different methods, including the light microscopy, the mercury intrusion porosimetry (MIP), and the nitrogen adsorption/desorption (NAD) experiments, and the correlations among them were researched. The results show that drying shrinkage process of thermal insulation mortar includes three steps with increasing curing time: the acceleration period (before 7 d), the deceleration period (7-365 d), and the metastable period (after 365 d). Drying shrinkage in the first stage (7 d before) increases quickly owing to the fast water loss, and its development in the last two stages is attributed to the increment of the pore volume of mortar with the radius below 50 nm, especially the increment of the pore volume fraction of the pore radius within the size range between 7.3 nm and 12.3 nm. There is no change in the drying shrinkage development trend of mortar with fly ash addition, and three steps in the service life, but fly ash addition in the mortar restrains its value. There is a linear relationship between the drying shrinkage and fly ash content, which means that drying shrinkage reduces with fly ash addition.  相似文献   

17.
Rice husk ash/natural rubber composites were fabricated by modifying rice husk ash with the rare earth coupling agent DN-8102. The structure of the rice husk ash and the morphological dispersion of the rice husk ash in a rubber matrix were charactered by scanning and transmission electron microscopy, respectively.The mechanical properties of the composites were experimentally studied. The surface energy and the interaction between rice husk ash particles can be reduced by surface modification of rice husk ash with a rare earth coupling agent, which reduces the agglomeration of rice husk ash in both liquid and rubber matrices and enhances the interactions between rice husk ash and the rubber phase, and thus results in improved mechanical properties for the resulting rice husk ash/natural rubber composite. The modulus of the composites will increase as the loading level of modified rice husk ash increases. A maximum tensile strength of 25.96 MPa for the composites can be obtained when the modified rice husk ash loading level is 4%.  相似文献   

18.
活性矿物掺合料对超高性能水泥基材料的影响   总被引:1,自引:1,他引:0  
通过复掺粉煤灰和硅灰,制备一种抗压强度超过200 MPa的超高性能水泥基复合材料(UHPCC),采用扫描电镜、微区能谱分析、X射线衍射、汞压入法和差示扫描量热分析等现代测试手段,研究了活性矿物掺合料对UHPCC微观结构及性能的影响.实验结果表明,UHPCC水泥石主要以低mCa/mSi、结构致密的C-S-H凝胶和许多未水化颗粒组成;活性矿物掺合料的火山灰效应使水泥浆体与集料间界面过渡区得以改善;矿物掺合料的微集料效应使体系颗粒级配优化,致使基体内部结构致密,总孔隙率减小,孔尺寸得到细化,孔结构得以优化,材料性能得以提高.  相似文献   

19.
大掺量添加填料可以大幅度地降低生产成本,但同时也会对材料性能产生一定影响.试验研究了木粉、碳酸钙、粉煤灰的掺量对木塑复合材料弯曲性能的影响.结果表明:随着木粉掺量的增加,木塑材料的弯曲强度先增加后降低,当木粉掺量达到60%时,弯曲强度达到最大值.随着碳酸钙掺量的增加,木塑材料的弯曲强度先增加后降低,当其掺量达到30%时,弯曲强度达到最大值,掺加粉煤灰也呈现相同规律.  相似文献   

20.
多种因素对混凝土孔结构分形特征的影响研究   总被引:6,自引:0,他引:6  
目的在分形理论的指导下,以压汞测孔为基础,探索混凝土结构形成条件与其分形特征,尤其是冻融循环后的混凝土孔隙分形特征.方法计算并分析了不同水化龄期下普通水泥和硫铝酸盐水泥孔隙分形特征的变化,研究了水泥熟料单矿物组成的孔隙分形维数.用压汞测孔的试验结果计算分析了混凝土冻融循环前后分形维数的变化.结果在180d以内水泥石的孔隙的分形维数随龄期增长而增大,在龄期为360d时,虽然总孔隙率最低,但由于水化物结晶度提高,凝胶孔含量降低,毛细孔增多,其分形维数变低;硫铝酸盐水泥水化3d~14d期间,分形维数不断增高,28d维数回落,与硅酸盐水泥长龄期的特征一致.结论在水泥熟料单矿物水化硬化孔分布特征评价中,其分形维数大小顺序为C3S>C2S>CF>C3A.C40强度等级的混凝土和C60非引气混凝土冻融循环200次后与受冻前孔隙分形维数相比有明显的变化,C100非引气混凝土冻融循环1200次后,其分形维数有明显的变化,而引气后的C60混凝土经1200次冻融循环后,其分形维数无明显变化.此外,养护条件对水泥石孔隙分形特征也有明显的影响.采用分形理论分析评价多种因素对混凝土孔结构分形特征的影响是十分有效的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号